Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt
{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment
{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ*

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
M1 - GI Sequence
(GI/Liver)

Sequence Coordinator
Matthew Velkey

Winter, 2007
Digestive System

Gastrointestinal Tract

Oral cavity - Anus

Accessory Glands

Salivary Glands
Liver
Pancreas
GI Tract

Mucosa
- Epithelium (glands)
- Lamina propria
- Muscularis mucosae

Submucosa (glands)

Muscularis Externa
- Inner circular (Myenteric plexus)
- Outer longitudinal

Serosa or adventitia
Nerves (and arteries) of the GI Tract
Digestion

Ingestion
Mechanical Processing
Chemical Digestion
Absorption
Compaction and Removal of indigestible residue
Portal Circulation

- Hepatic portal vein
- Superior mesenteric vein
- Inferior mesenteric vein
- Splenic vein

Gray’s Anatomy Plate 591, Wikipedia
Major Functions of the Liver

Bile formation and secretion
Plasma protein synthesis and secretion

Maintenance of normal blood glucose, amino acid and fatty acid concentrations
Carbohydrate metabolism
Lipoprotein synthesis and secretion
Metabolism of steroids, including synthesis and release of cholesterol

Metabolism of lipid soluble drugs and detoxification
GI Sequence Contents

1. **Structure, Function and Regulation of the GI Tract**
 - Formation and Development
 - Anatomy and Histology
 - Functional Physiology and Regulation

2. **Metabolic Interaction**
 - Metabolism of CHO, Lipids, Proteins, Cholesterol, etc.

3. **Pharmacology**
 - Drug Disposition and Metabolism
Sequence Contents: Structure

Development
 Anatomy module: Gut formation and rotation

Structure
 Anatomy:
 Stomach
 Duodenum, Pancreas, Liver and Biliary System
 Small and Large Intestines
 Anatomy modules:
 Abdominal viscera, Autonomic innervation, and Radiology

Histology:
 Oral Cavity and Salivary Glands (Kim)
 GI Tract - Pharynx, Esophagus and Stomach (Velkey)
 Pancreas, Liver and Gall bladder (Kim)
 GI Tract - Small and Large Intestines (Velkey)
Sequence Contents: Physiology

Functions and Regulation of GI Tract (Williams)
1. Nerves and Hormones
2. Salivary glands, Esophagus and Stomach
3. Stomach and Pancreas
4. Pancreas and Bile
5. Liver/Integration
6. Digestion and Absorption
7. Absorption and Motility
8. Colon/Integrative Review

Physiology Small Group

Nutrition and GI microbiology (Williams, Burant, and Abrams)
1. Macronutrients (Burant)
2. Micronutrients (Williams)
3. GI microbial flora - host relationship (Abrams)
Sequence Contents: Metabolism

Metabolic Interaction (Weinhold)

1. Hormonal control
2. Glucose/Fructose/Galactose/Gluconeogenesis
3. Gluconeogenesis
4. Overall Regulation
5. Glycogen
6. Glycogen regulation
7. Fatty acid oxidation/ Ketone bodies
8. Triglycerides/phospholipids
9. Cholesterol/Lipoproteins
10. Adipose
Sequence Contents: Pharmacology

Since most drug therapy is oral, the gastrointestinal tract plays a crucial role in drug absorption metabolism and pharmacokinetics.

Pharmacology (Osawa): Introduces the basic principles that govern absorption and metabolism of drugs.

Drug Disposition
Drug Metabolism I, II and III
Textbooks

In addition to those recommended earlier,

1. Gastrointestinal Physiology by Kim E. Barrett
 published by Lange (McGraw Hill) 2006

Both should be viewed as supplementary and the lectures will not follow them directly but they cover the material. They are both paperbacks.
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

