Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt				
{ Content the	e copyright holder, author, or law permits you to use, share and adapt. }			
@ PD-GOV	Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)			
Ø PD-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.			
@ PD-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.			
(cc) ZERO	Creative Commons – Zero Waiver			
CC) BY	Creative Commons – Attribution License			
(G) 81-5A	Creative Commons – Attribution Share Alike License			
(C) 87-NC	Creative Commons – Attribution Noncommercial License			
(C) BY-NC-SA	Creative Commons – Attribution Noncommercial Share Alike License			
GNU-FDL	GNU – Free Documentation License			

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

Introduction to Radiation Oncology - Clinical

Ted Lawrence, MD, PhD

Department of Radiation Oncology

Winter 2009

University of Michigan

Radiation Oncology

TSL03 2

- Surgery 150,000 patients per year
- Radiation 85,000 patients per year
- Chemotherapy 15,000 patients per year!

Vincent DeVita, NCI Grant Rounds, 1983

- Brain tumors (low grade)
- Head and neck cancers (early stage)
- Skin cancers (all)
 - Especially lip, eyelid, nose, and ear
- Lymphomas (all but advanced stage)
- Seminoma (all but advanced stage)
- Soft tissue sarcoma (any stage)
- Lung cancer (early stage)
- Cervix and endometrial cancer (early stage)

PD-INEL Source Undetermined

PD-INEL Source Undetermined

- Brain metastases
- Lung metastases
 - Producing airway obstruction or superior vena cava syndrome
- Bone metastases
 - Producing spinal cord compression
- Esophageal obstruction
- Bile duct obstruction

- By improving our ability to hit the tumor and miss the normal tissue
- By customizing combinations of radiation with chemotherapy or molecularly targeted therapy
- By assessing tumor and normal tissue response during treatment and tailoring therapy to these responses

Treatment planning

- Determine 3D orientation of tumors and normal tissues
- Planning radiation
 - Conformal treatment
 - Tools to quantify dose (dose-volume histograms)
- Position patient and tumor
 - Localize patient on treatment machine
 - Account for organ motion
- Treatment delivery

- Treatment based on population estimate of what might control a tumor
- Estimate the risk of normal tissue damage base on the most sensitive 5% of the population
- Treatment delivered to initially prescribed dose
 - Stop only for unacceptable acute toxicity
- Emphasis making isodose lines conform more tightly to the tumor

Partial Parotid Gland Sparing:

Conformal Techniques in Patients Undergoing Bilateral Neck Irradiation

SPINAL CORD

Radiation Oncology

PD-INEL
 Source Undetermined

TSL03 12

Move info between MR and CT

COPP-INEL Kessler, University of Michigan TSL03 15

Define volumes on MR

Map to CT data and combine

MR-derived CT target volume !

Ø PD-INEL

Source Undetermined

Brain Example

© PD-INEL Kessler, University of Michigan

Brain Example

Brain Example

e PD-INEL Kessler, University of Michigan

PD-INEL Ten Haken et al Int J Radiat Oncol Biol Phys 16:193, 1989

Inhale

Exhale

© PD-INEL Source Undetermined

PD-INEL Source Undetermined

Radiation Oncology

Dose (%)

- Unresectable intrahepatic cancer could be cured by radiation (± chemotherapy) if a high dose could be given
- A high dose could be safely given if we
 - Limited the dose to the normal liver
 - Understood how much of the liver could be irradiated safely
 - Requires knowing the relationship between the risk of complication and the DVH of the normal liver

- Dose prescribed by volume of normal liver irradiated
 - Of 9 of 79 patients developed radiation-induced liver disease (RILD)
- Fit data to an NTCP model
 - Clinical guesses greatly overestimated the risk of partial liver radiation
 - Recalculated the parameters and fit the data to the model

Lawrence TS, et al, Int J Radiat Oncol Biol Phys, 23:781, 1992

- Designed a prospective trial to test the model parameters
- We were able to deliver a median dose of 57 Gy
- The actual rate of complications (1/21 patients or 4.8%) was close to the calculated rate (9%)

McGinn CJ, et al, J Clin Oncol,16:2246, 1998

PD-INEL
 Source Undetermined

Pre-radiation

6 months post-radiation

Improvements Over 2D Produced by Highly Conformal Therapy: 2007

Organ	2D Max dose (Gy)	3D Max dose (Gy)	Benefit
Lung	60-70	102	1%/Gy 2 yr PFS
Prostate	68-70	78-86.4	1-2%/Gy increase in 5 year PFS
Liver	30	90	24 <i>vs</i> 6-10 mos OS for ≥70 Gy <i>vs</i> less
Head & Neck	70-76	70-76	↓ Xerostomia

© PD-INEL T. Lawrence

- By improving our ability to hit the tumor and miss the normal tissue
- By customizing combinations of radiation with chemotherapy or molecularly targeted therapy
- By assessing tumor and normal tissue response during treatment and tailoring therapy to these responses

- High grade glioma
- Locally advanced head and neck cancer
- Stage III non-small cell lung cancer
- Esophageal cancer
- Pancreas cancer
- Cervix cancer
- Adjuvant therapy
 - Rectal cancer
 - Stomach cancer

Concurrent

- Locally advanced laryngeal cancer
 - Avoids laryngectomy
- Anal cancer
 - Avoids colostomy
- Sequential
 - Breast cancer
 - Extremity sarcoma (± chemotherapy)

- Address both local and distant disease
- Full dose gemcitabine with concurrent dose escalating radiation
 - To do this safely, needed to decrease the irradiated volume
 - Radiation dose escalation trial

Treatment Volumes with Concurrent Full Dose Gemcitabine

PD-INEL Source Undetermined

Prophylactic irradiation

PD-INEL Source Undetermined

No prophylactic irradiation

PD-INEL McGinn et al .J Clin. Oncol. 19: 4202, 2001

University of Michigan Growth Factor Receptors

<u>Stratify by</u>

- Karnofsky score: 90-100 vs. 60-80
- Regional Nodes: Negative vs. Positive
- Tumor stage: AJCC T1-3 vs. T4
- RT fractionation*: Concomitant boost vs. Once daily vs. Twice daily

Time (months)

- By improving our ability to hit the tumor and miss the normal tissue
- By customizing combinations of radiation with chemotherapy or molecularly targeted therapy
- By assessing tumor and normal tissue response during treatment and tailoring therapy to these responses

- TGF $\beta 1$ is a marker for lung damage
- Prospective trial to select patients for dose escalation
 - Eligibility escalate dose above 73.6 Gy only if TGF β 1 level suggested they were not experiencing lung damage
- Only 2/14 patients treated at 80 Gy or above developed dose limiting toxicity (at 86.4 Gy)
- Further follow-up, grade 4 and 5 complications occurred, but only in patients who were NOT dose escalated (because of high TGFβ1)

Anscher et al J. Clin Oncol 19:3758, 2001 Anscher et al Int. J. Radiat. Oncol. Biol. Phys. 56:988,2003

Cu-ATSM PET to Image Hypoxia

Chao, IJROBP 2001; 49(4): 1171-1182 PD-INEL

Before Radiation

After 20 Gy

© PD-INEL Chao el al., IJROBP 54:72, 2002 (Both images) Radiation Oncology University of Michigan Medical School

- Radiation-induced liver disease (RILD) occurs 2 weeks to 3 months after treatment
 - Too late to adjust radiation dose
- RILD is caused by veno-occlusive disease
- Hypothesis: can decreased blood flow during a course of radiation be detected?
 - Dynamic contrast-enhanced CT

PD-INEL Cao Y et al , Medical Physics (accepted) 2006 (Both images) Radiation Oncology

Change 1 month after treatment

- Lung cancer typically occurs in patients with damaged lungs due to smoking
- In contrast to liver, in which volume can act as a surrogate for function, not all parts of the lung may be equal
- "Functional lung DVH" take into account which parts of the lung work

- Diffusion MRI measures water mobility
- Hypothesis
 - In a responding tumor
 - Mobility could increase when cells die
 - Mobility could decrease if cells shrink before dying
 - In a non-responding tumor
 - No change in mobility
- Tumors were imaged pretreatment and again 3 weeks into treatment
 - How did the change in mobility correlate with response?

Diffusion MRI predicts response

Medical School

University of Michigan RT affects brain tumor blood flow

- MRI can measure brain tumor blood flow
- Although high grade brain tumors show regions of increased blood flow, some parts have little flow
- Hypothesis
 - Radiation might increase blood flow to regions with poor initial flow
 - If this were true, radiation might increase delivery of systemic chemotherapy into a tumor
 - Might partially explain why concurrent chemotherapy and radiation benefits patients
 with glioblastoma

Pre RT

Week 3 during RT

Red: initially enhanced region; Yellow: initially non-enhanced tumor region

© PD-INEL Cao, Y. et al J Clin Oncol 23: 4127, 2005 **Radiation Oncology**

- Treatment based on population estimate of what might control a tumor
- Estimate the risk of normal tissue damage base on the most sensitive 5% of the population
- Treatment delivered to initially prescribed dose
 - Stop only for unacceptable acute toxicity
- Emphasis making isodose lines conform more tightly to the tumor

- Treatment based on molecular targeting of aberrant growth pathways
- Estimate the risk of normal tissue damage base on the individual patient using functional and metabolic imaging with adjustments during treatment
- Emphasis on
 - Multimodality research
 - Multimodality therapy
 - Continued technical advances, but in a broader context

Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 4: Source Undetermined Slide 9: Source Undetermined Slide 10: Source Undetermined Slide 11: Source Undetermined Slide 12: Source Undetermined Slide 13: Sources Undetermined Slide 14: Kessler, University of Michigan Slide 15: Kessler, University of Michigan Slide 16: Kessler, University of Michigan Slide 17: Kessler, University of Michigan Slide 18: Kessler, University of Michigan Slide 19: Kessler, University of Michigan Slide 20: Ten Haken et al Int J Radiat Oncol Biol Phys 16:193, 1989 Slide 21: Pollack, et. al., IJROBP, 53:5, 2002 Slide 22: Sources Undetermined Slide 23: Theodore Lawrence Slide 27: Source Undetermined Slide 28: Ben-Josef E., et.al, J Clin Oncol 23:8747, 2005 Slide 29: Theodore Lawrence Slide 34: Sources Undetermined Slide 35: McGinn et al .J Clin. Oncol. 19: 4202. 2001 Slide 36: Source Undetermined Slide 37: Muler et al J. Clin. Oncol 22:238. 2004 Slide 38: Nyati MK et al Nature Reviews Cancer Nov 2006 Slide 40: Theodore Lawrence Slide 43: Chao, IJROBP 2001; 49(4): 1171-1182 Slide 44: Chao el al., IJROBP 54:72, 2002 (Both images) Slide 46: Cao Y et al, Medical Physics (accepted) 2006 (Both images) Slide 47: Cao Y et al, Medical Physics (accepted) 2006 Slide 49: Marks LB et al Sem Oncol 13:333, 2003 Slide 50: Kong F,unpublished, 2005 Slide 52: Hamstra DA et al, Proc Nat Acad Sci USA 102: 16759, 2005 Slide 54: Cao, Y. et al J Clin Oncol 23: 4127, 2005