Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
M1 - GI Sequence

Pancreas

John Williams, M.D., Ph.D.

Winter, 2009
PANCREAS

Gray’s Anatomy, wikimedia commons
The pancreas is made up of three functional components:

Endocrine – Islets 2%

Exocrine – Acinar 80%
 Digestive Enzymes

Exocrine - Ducts 8%
 Bicarbonate Rich Fluid

Innervation
 Vagal – Acini Ach main transmitter
 Ducts
 Islets
 Sympathetic – Islets NE main transmitter
 Blood Vessels
REGULATION OF PANCREATIC SECRETION
Stimulation of Pancreatic Secretion during the Intestinal Phase

Presence of acid in duodenum cause release of **Secretin**
Presence of Fats in duodenum cause release of **Cholecystokinin**

Vagal Stimulation cause release of pancreatic enzymes

Secretin causes release of Bicarbonate secretions
CCK causes secretion of Enzymes

Control of Pancreatic Secretions

Frank Boumphrey M.D. 2009

[Image credit: Frank Boumphrey, M.D., wikimedia commons]
Stimulation of Pancreatic Secretion during the Intestinal Phase

Paracrine stimulation
Within the mucosa

Endocrine stimulation
Concentration of Ions in Pancreatic Juice as a Function of Flow

Pancreatic Bicarbonate output increases in response to low Duodenal pH

Fig. 9-5 Johnson, L. *Gastrointestinal Physiology*, 6th ed. Mosby Elsevier, St. Louis, MO; 2001: 102.
Mechanism of Pancreatic Bicarbonate Secretion

New Fig 16.3

- Duct Cell
- ATPase
- K+
- CO₂
- Na⁺
- H₂CO₃
- HCO₃⁻ + H⁺
- Na⁺
- H⁺
- Na⁺
- ATPase
- H⁺
- Na⁺
- cAMP
- Secretin
- Na⁺, K⁺
- Tight junction
- CFTR
INTRACELLULAR TRANSPORT OF PANCREATIC SECRETORY PROTEINS
Stimulus-secretion Coupling of Pancreatic Enzyme Secretion
Human pancreatic exocrine enzymes

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Molecular weight (daltons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteases</td>
<td></td>
</tr>
<tr>
<td>Trypsinogen 1</td>
<td>25,000</td>
</tr>
<tr>
<td>Trypsinogen 2</td>
<td>25,000</td>
</tr>
<tr>
<td>Trypsinogen 3</td>
<td>23,400</td>
</tr>
<tr>
<td>Chymotrypsinogen</td>
<td>24,000</td>
</tr>
<tr>
<td>proElastase 1</td>
<td>33,000</td>
</tr>
<tr>
<td>proElastase 2</td>
<td>26,600</td>
</tr>
<tr>
<td>Protease E</td>
<td>33,000</td>
</tr>
<tr>
<td>Kallikreinogen</td>
<td>35,000</td>
</tr>
<tr>
<td>proCarboxypeptidase A1</td>
<td>44,500</td>
</tr>
<tr>
<td>proCarboxypeptidase A2</td>
<td>47,000</td>
</tr>
<tr>
<td>proCarboxypeptidase B1</td>
<td>47,300</td>
</tr>
<tr>
<td>proCarboxypeptidase B2</td>
<td>47,300</td>
</tr>
<tr>
<td>Glycosidase</td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>57,000</td>
</tr>
<tr>
<td>Lipases</td>
<td></td>
</tr>
<tr>
<td>Triglyceride lipase</td>
<td>48,000</td>
</tr>
<tr>
<td>Colipase</td>
<td>10,000</td>
</tr>
<tr>
<td>Carboxyl ester hydrolase</td>
<td>100,000</td>
</tr>
<tr>
<td>Phospholipase A2</td>
<td>14,000</td>
</tr>
<tr>
<td>Nucleases</td>
<td></td>
</tr>
<tr>
<td>DNase I</td>
<td>30,000</td>
</tr>
<tr>
<td>RNase</td>
<td>15,000</td>
</tr>
</tbody>
</table>
Activation of Pancreatic Proenzymes in the Intestine involves Enterokinase and activated Trypsin
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 4: Gray’s Anatomy Plate 1100, Wikimedia Commons,
http://commons.wikimedia.org/wiki/File:Gray_1100_Pancreatic_duct.png
Slide 6 – John Williams modified from Kent Christensen
Slide 7 – Jim Sherman
Slide 8: Frank Boumphrey, M.D., Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Pancreas_secretion.png,
CC:BY-SA
http://creativecommons.org/licenses/by-sa/3.0/
Slide 9 – John Williams modified from undetermined
Slide 10 – Source Undetermined
Slide 12 – Fig. 9-5 Johnson, L. *Gastrointestinal Physiology*, 6th ed. Mosby Elsevier, St. Louis, MO; 2001: 102.
Slide 13 – John Williams
Slide 14 – Source Undetermined
Slide 15 – John Williams
Slide 16 – Source Undetermined
Slide 17 – Jim Sherman