Author(s): Robertson Davenport, M.D., 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Noncommercial–Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government:** Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired:** Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated:** Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible:** Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use:** Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ*

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Blood Components

- Red blood cells
- Plasma
- Cryoprecipitated Antihemophilic Factor
- Platelets
- Granulocytes
- Mononuclear cells
- Hematopoietic progenitor cells
Blood Donation

• Types of donations
 – Allogeneic
 – Autologous
 – Directed

• Methods of blood collection
 – Whole blood
 – Apheresis
Blood Donor Qualification

- Determined by FDA
- Health history
 - Infectious disease risks
 - Cancer, heart or lung disease, bleeding
 - Medications
 - Pregnancy and transfusions
 - Donation reactions
- Vital signs
- Confidential self exclusion
- Donor deferral registry
- Infectious disease testing
Current Infectious Disease Testing

- *Treponema pallidum* antibody
- Hepatitis B surface antigen (HBsAg)
- Hepatitis B core antibody (anti-HBc)
- Hepatitis C virus antibody (anti-HCV)
- HIV-1 and HIV-2 antibody (anti-HIV-1 and anti-HIV-2)
- HTLV-I and HTLV-II antibody (anti-HTLV-I and anti-HTLV-II)
- HIV, HCV, West Nile Virus RNA (NAT)
- *Typanosoma cruzi* antibody
- HBV NAT under IND
Adverse Effects of Donation

- Iron deficiency
- Hematoma
- Pain at phlebotomy site
- Syncope
- Hyperventilation
- Arterial puncture
- Nerve injury
Autologous Donation Criteria

- Lower minimum hematocrit
- Shorter donation interval
- Risk factors for infectious diseases acceptable
Whole Blood Derived Components

- Red Blood Cells
- Platelet Concentrate
- Fresh Frozen Plasma
- Cryoprecipitate
Apheresis Components

- Red Blood Cells
- Plasma
- Platelet concentrate
- Granulocytes
- Mononuclear cells
- Hematopoietic progenitor cells
Storage Changes in Red Blood Cells

- Hemolysis
- K^+ leakage
- ↓2,3-DPG
- Senescence
- Loss of SNO-Hb?

![Graph showing percent survival over days post-transfusion](image)

R. Davenport
Storage Changes in Liquid Plasma

Days of storage

Percent activity

100

FVIII
FII
FV
FVII
FX
Fibrinogen

R. Davenport
Storage Changes in Platelets

- **Activation**
 - P-selectin
 - CD40L
- **Granule release**
 - Beta-thromboglobulin
 - CCL5, CXCL4, CXCL7
- **GP Ib clustering**
Blood Group Serology

• Red cell antibodies
 – Naturally occurring
 – Secondary to exposure
 – Autoantibodies

• Leukocyte antibodies
 – HLA
 – HNA
 – Autoantibodies

• Platelet antibodies
 – HPA
 – Autoantibodies
Detection of Red Cell Antibodies

• Direct agglutination
 – IgM antibodies

• Indirect antiglobulin test
 – IgG antibodies

• Direct antiglobulin test
 – IgG or C3 coated red cells
Red Cell Antibody Screen

- Indirect antiglobulin test
 - Patient serum
 - Known phenotype red cells
 - Antiglobulin (anti-IgG) serum
Direct Antiglobulin Test

- Patient red cells
- Antiglobulin (anti-IgG or anti-C3) serum
Applications of Direct Antiglobulin Test

• Autoimmune hemolytic anemia
• Transfusion reactions
• Drug induced hemolysis
• Cold agglutinin disease
• Autoimmune diseases
Routine Pretransfusion Testing

• ABO typing
 – A and B antigen test
 – Anti-A and Anti-B antibody test

• Rh typing
 – Rh(D) antigen test

• Red Cell antibody screen
Common Blood Types

<table>
<thead>
<tr>
<th>Blood type</th>
<th>A antigen</th>
<th>B antigen</th>
<th>Anti-A</th>
<th>Anti-B</th>
<th>Rh(D) antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Positive</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>O Negative</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

R. Davenport
Selection of Compatible Blood

• ABO type
• Rh type
• Unexpected antibodies
 – Antibody identification
 – Phenotype negative donors
• Crossmatch
Emergency Transfusion

- Group O red cells
- Group AB plasma
- Rh negative preferable
 - Women of child bearing potential
- Obtain pretransfusion sample ASAP
- Good communication is essential
Blood Component Therapy

• Clinical considerations
 – Cause of bleeding or red cell loss
 – Rate of blood loss
 – Underlying diseases
 – Risks of future bleeding
 – Physiologic compensations
Indications for Red Blood Cell Transfusion

- Symptomatic anemia
- Bleeding > 15% total blood volume
- Chronic hypoproliferative anemia
- Hemolytic anemia
 - Sickle cell anemia
 - Hemolytic crisis
 - Acute chest syndrome
 - Stroke prophylaxis
- Uremic bleeding
TRICC Trial

• 838 ICU patients with Hb <9.0
• Restrictive transfusion
 – Hb <7.0 target 7.0 - 9.0
• Liberal transfusion
 – Hb <10.0 target 10.0 - 12.0

TRICC - Overall Outcome

All Patients

Survival (%)

Days

Restrictive-transfusion strategy
Liberal-transfusion strategy

P = 0.10
TRICC Subgroup Outcomes

1. Patients Younger than 55 Years
 - Restrictive-transfusion strategy
 - Liberal-transfusion strategy
 - Survival (%)
 - Days
 - P = 0.02

2. Patients with APACHE II Score ≤ 20
 - Restrictive-transfusion strategy
 - Liberal-transfusion strategy
 - Survival (%)
 - Days
 - P = 0.02

Red Cell Transfusion Examples

- Usually indicated
 - Acute blood loss of 1000 ml in an adult
 - Chronic anemia, hematocrit 24%, in a patient with dyspnea and angina

- Usually not indicated
 - Hematocrit 30% in a patient scheduled for tonsillectomy
 - Hematocrit 25% in a patient with autoimmune hemolytic anemia
Indications for Platelet Transfusion

- Hemorrhage due to thrombocytopenia
- Hemorrhage due to platelet dysfunction
- Hypoproliferative thrombocytopenia with risk of hemorrhage (e.g. <10,000/µl)
- Thrombocytopenia (e.g. <50,000/µl) with bleeding or invasive procedure
Prophylactic Platelet Transfusion in AML

- Threshold, 20,000 platelets/mm³
- Threshold, 10,000 platelets/mm³

Proportion without Major Bleeding

Day

P = 0.54
Platelet Transfusion Examples

• Usually indicated
 – Platelet count 5,000/µl in a patient on chemotherapy
 – Platelet count 40,000/µl in a patient on aspirin with hemorrhage

• Usually not indicated
 – Platelet count 20,000/µl in a patient with ITP
Factors Affecting Platelet Transfusion Effectiveness

- Antibodies
 - HLA
 - Platelet specific
 - ABO
- Splenomegally
- Consumption/DIC
- Sepsis
- Drugs
- Body size
- Rate of transfusion
Contraindications to Platelet Transfusion

- Immune thrombocytopenic purpura
- Thrombotic thrombocytopenic purpura
- Heparin-associated thrombocytopenia
Indications for Plasma Transfusion

- Coagulation factor deficiency (consider factor concentrates)
- Disseminated intravascular coagulation
- Reversal of warfarin anticoagulation
- Dilutional coagulopathy (massive transfusion)
- Hemorrhage in liver disease
- Thrombotic thrombocytopenic purpura
Transfusion in Trauma

Transfusion in Trauma

Logrank p < 0.001

FFP_H
Plasma:RBC >1:2

FFP_L
Plasma:RBC <1:2

Plt_H
Platelet:RBC >1:2

Plt_L
Platelet:RBC <1:2

Source Undetermined
Indications for Cryoprecipitate Transfusion

- Factor VIII deficiency
- von Willebrand’s disease
- Hypofibrinogenemia
- Factor XIII deficiency
- Uremic bleeding
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 12: Robertson Davenport
Slide 13: Robertson Davenport
Slide 17: Robertson Davenport
Slide 18: Robertson Davenport
Slide 21: Robertson Davenport
Slide 31: Source Undetermined
Slide 36: Source Undetermined