

Author(s): John Levine, M.D., 2009

License:Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution 3.0 License**: http://creativecommons.org/licenses/by/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about **how to cite** these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.

Myeloid Cell Disorders

M2 Hematology/Oncology Sequence John Levine, MD

Winter 2009

Myeloid Cell Disorders: Goals

- Define members of the myeloid series
- Understand:
 - white blood cell maturation
 - the white blood cell count and differential
 - 'philias' and 'penias' of the myeloid series members and associated clinical settings
 - recruitment of WBC from the circulation.
- Associate white blood cell defects with function

Maturation of Myeloid Cells

Mature Myeloid Cells

Neutrophil

Eosinophil

Monocyte

Source Undetermined (All Images)

Assessment of Circulating WBC

- The total white blood cell count (WBC) and differential are measured in an automated counter
- WBC reflects the <u>circulating</u> pool of myeloid and lymphoid cells
- WBC in each microliter (μl;mm³) is reported
- Relative proportion of each type of WBC is indicated by a percentage
- Absolute number is the percentage of each type of WBC multiplied by the total WBC

White Blood Cell Counts: Normal Ranges

	WBC	PMN	Band	Lymph	Mono	Eos	Baso
Birth (0-1m)	6-30K	42-80%	2%	26-36%	3-8%	0-5%	0-2%
Child (1m – 12m)	6-18K	18-44%	3%	46-76%	3-8%	0-5%	0-2%
Child (1y – 16y)	5-14K	37-75%	3%	25-57%	3-8%	0-5%	0-2%
Adult	4-10K	36-75%	2%	20-50%	3-8%	0-5%	0-2%

White Blood Cell Counts: Disease States

	WBC	PMN	Band	Lymph	Mono	Eos	Baso
Bacterial Infection	16K ↑	79% ↑	8% ↑	8%	3%	1%	1%
Steroid Therapy	12K ↑	79% ↑	4%	14%	3%	0%	0%
Splenectomy	13K ↑	50%	2%	40%	5%	2%	1%
Viral Infection	3.5K ↓	50%	2%	40%	5%	2%	1%
Chemo	<3K↓	65%	0%	20%	12% ↑	2%	1%

BD-TNEL J. Levine

Neutrophil Maturation

Bone Marrow

Neutrophil Maturation - Proliferative Phase

Proliferation

PD-TNEL Source Undetermined (All Slides)

PD-INCL

Promyelocyte

Myelocyte ¹¹

65 % of myeloid cells

Maturation 6-7 days

Source Undetermined (All Slides)

Band

Neutrophil 12

😰 PD-INEL J. Levine

Metamyelocyte

Fate of the mature neutrophil

Approximately 10% of the developing neutrophils are in the circulation, marginated or in the tissue.

Disorders of Neutrophil Numbers

Definition of Neutrophilia - too many

- Normal ANC is 1500-7700/μl
- Neutrophilia: abnormally high ANC
- Shift to the left:
 ['] d release of
 precursors from the bone marrow
 - not necessarily associated with neutrophilia

Neutrophilia

- Acute shift from marginating to circulating pool
 - ↑ measured WBC, not total WBC
- Causes:
 - Steroid treatment
 - Exercise
 - Epinephrine
 - Hypoxia
 - Seizures
 - Other stress

Chronic Stimulation

- Excess cytokine stimulates proliferative pool
- Causes:
 - Infection
 - Down's Syndrome
 - Pregnancy/Eclampsia
 - Chemotherapy recovery
 - Myeloproliferative disorders
 - Marrow metastases

Example: exercise induced neutrophilia

Neutropenia: too few

- Neutropenia
 - Definition: ANC < 1500/µl
 - ANC 500-1000 increased risk of infection from exposure
 - ANC < 500: increased risk of infection from host organisms
- African-Americans: lower normal neutrophil counts (1000-1200)

Acquired Causes of Neutropenia

Decreased Production	Increased Destruction	Shift to Marginating Pool
Bone marrow	Peripheral circulation	Move from the circulating pool to attach along the vessel wall
Medication: Chemotherapy Antibiotics, etc	Autoimmune diseases (Rheumatoid arthritis, SLE, etc)	Severe infection Endotoxin release Hemodialysis Cardiopulmonary bypass

Increased Destruction

Anti-neutrophil antibody

Neutrophil-Antibody Complex Uptake and destruction of neutrophil by the RE system

Shift to Marginating Pool

Severe infection / Endotoxin release Hemodialysis Cardiopulmonary bypass

Evaluation of Neutropenia

- If visit prompted by a fever and ANC is low, treat promptly for infection
- Suspect medication: major cause of neutropenia
- If no culprits, bone marrow exam for:
 - Malignancy
 - Infiltration by non-marrow cells
 - Arrest of cell growth
 - Myeloproliferative disorder

Cyclic Neutropenia

Figure Blood cell counts of Patient No. 15 show regular 21 day cyclic variation. Note that monocytes and reticulocytes tend to rise when the neutrophils full.

Source Undetermined

- 21 day cycle
- autosomal dominant
- fever, mouth ulcers
- Treatment G-CSF
- usually improves after puberty

Congenital Neutropenia

- Maturation arrest
- frequent infections, often serious
- mouth sores
 - may lose teeth or develop severe gum infections
- Increased risk of leukemia
- Tx: G-CSF, BMT

Role of Neutrophil

- Responds to chemotactic factors released from damaged tissue
- Rolls and attaches to the endothelial cell wall
 - protein and carbohydrate interactions (selectins and their ligands).
- Becomes **activated** by chemotactic factors
- **Tightly adheres** through the integrin family of proteins.
- **Migrates** across the endothelial cell wall.
- **Phagocytizes** organisms so that they are contained within a vesicle or phagosome.
- Releases granule products and reduced oxygen species (e.g. hydrogen peroxide and superoxide) to kill organisms

Function of the Circulating Neutrophil

Disruption of Neutrophil Function

- Steps where defects in structural components of neutrophils results in impaired ability to fight infection
 - Recruitment from the circulation
 - Adhesion and subsequent migration
 - Defective production in active oxygen metabolites
 - Deficiency in granules

Defect in Attachment/Rolling

Attachment/rolling

Neutrophils do not attach and are not recruited to the site of inflammation

Defect in Adhesion

Integrins on the surface of neutrophils mediate tight adhesion to the endothelial cell wall. Cells then migrate.

Adhesion Migration

Chemoattractant

LAD-1 results from a defect in leukocyte integrins. Decreased to absent expression on the cell surface. Cells can not adhere and subsequently cannot migrate.

Clinical manifestations: LAD

Phagocytosis

Chediak-Higashi Syndrome: Defect in granule formation

Bacteria are engulfed and contained in a phagosome. Contents of the granules are released. Oxygen metabolites (superoxide and H₂O₂) kill bacteria

- Oculocutaneous albinism
 - Photophobia
 - Sun sensitivity
- Neuropathy
- Infections, esp Staph aureus
- TX: BMT

Chronic granulomatous disease (CGD)

Source Undetermined

Chronic granulomatous disease: CGD

- Catalase positive organisms
 - Staph aureus
 - Serratia marcescens
 - Burkholderia cepacia
 - Fungal
- Skin, lungs, bones, abscesses
- Granuloma formation from chronic infection

Myeloperoxidase deficiency

- One of the more common disorders
 1: 4000
- Decreased production of hypochlorous acid (HOCI)
- Killing takes longer than normal
- Clinically silent for most people

Diseases with Neutrophil Defects

Disease	Step	Molecular Defect
LAD-2	Rolling	Sialyl Lewis X Carbohydrate
LAD-1	Adhesion Phagocytosis	Integrin expression
Chediak- Higashi Syndrome	Migration Degranulation	Vacuolar sorting protein (large granules interfere with traversing endothelial wall)

Diseases with Neutrophil Defects

Disease	Step	Molecular Defect
CGD	Oxidative burst	NADPH oxidase
Myeloperoxidase Deficiency	Oxidative burst	HOCI Production

Monocyte-Macrophages

- Monocytes: circulating precursor of the tissue macrophage.
- Also known as the reticuloendothelial system
- -Average count 300 cells /μl
- -Range 0-800 cells/μl

Monocyte Differentiation

Function of Monocytes and Macrophages

Antigen presentation of phagocytized particles to T Cells

Monocyte Function

Follow neutrophils to sites of inflammation within 12-24h Number 1/30th that of neutrophils Pts w/ CGD, CHS and LAD also have defects in monocyte fxn

Disturbances in Monocytes

- Low counts
 - glucocorticoids
 - stress

Elevated counts

- Malignancy
- Granulomatous disease
- Marrow recovery
- Infections
 - malaria
 - TB
 - Rocky Mountain Spotted fever
 - leishmaniasis
 - brucellosis

Eosinophils

Eosinophil

Eosinophil Function

- Bright red granules
- IgE on cell surface (not on neutrophils)
- Play a key role in killing parasites
- Average absolute count 200/μl
- Non allergic individuals usually $<400/\mu$ l

Eosinophilia

- Conditions:
 - Neoplasm (Hodgkin's disease, lymphoma other tumors)
 - Allergies-drugs, environmental (grass, trees, dust)
 - Asthma
 - Collagen vascular diseases-vasculitis
 - Parasitic infection
- Idiopathic hypereosinophilia: elevated eosinophil count associated with organ dysfunction (GI, skin, CNS, cardiovascular).
 - > 5000/µl requires treatment with immunosuppressives and antihistamines

Basophil Function

Basophils and mast cells

 Function remains obscure but may play a role in host defense against certain parasites

Disturbances in Basophil Count

- Low count
 - hypersensitivity
 - glucocorticoids

- High count
 - Allergies
 - infection
 - endocrinopathies
 - myeloproliferative disorders
 - Systemic mastocytosis
 - symptoms due to excess histamine release

Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 5: UMN Hematography Plus, http://www1.umn.edu/hema/pages/matchart.html, Labeled by John Levine Slide 6: Source Undetermined (Both Images) Slide 8: John Levine Slide 9: John Levine Slide 10: John Levine Slide 11: John Levine; Source Undetermined (All Slides) Slide 12: John Levine; Source Undetermined (All Slides) Slide 14: Source Undetermined Slide 17: Source Undetermined Slide 20: John Levine Slide 21: John Levine Slide 23: Source Undetermined Slide 24: Source Undetermined Slide 26: John Levine Slide 28: John Levine Slide 29: John Levine Slide 30: Source Undetermined (Both Images) Slide 31: John Levine Slide 32: Source Undetermined Slide 33: W. B. Saunders Adv Neonatal Care Slide 34: Source Undetermined Slide 40: Source Undetermined Slide 41: John Levine Slide 42: John Levine Slide 44: John Levine; Source Undetermined (Both Slides) Slide 47: John Levine