Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Myeloid Cell Disorders: Goals

• Define members of the myeloid series
• Understand:
 – white blood cell maturation
 – the white blood cell count and differential
 – ‘philias’ and ‘penias’ of the myeloid series members and associated clinical settings
 – recruitment of WBC from the circulation.
• Associate white blood cell defects with function
Maturation of Myeloid Cells

G-CSF → Myeloblast → N. Promyelocyte → N. Myelocyte → Immature Monocyte → Megakaryocyte

GM-CSF → Myeloid Stem Cell → Pronormoblast → Basophilic Normoblast → Polychromatric Normoblast

Platelets → Erythrocyte → Lymphocyte
Mature Myeloid Cells

Neutrophil

Eosinophil

Basophil

Monocyte
Assessment of Circulating WBC

• The total white blood cell count (WBC) and differential are measured in an automated counter

• WBC reflects the **circulating** pool of myeloid and lymphoid cells

• WBC in each microliter (µl;mm³) is reported

• **Relative proportion** of each type of WBC is indicated by a percentage

• **Absolute number** is the percentage of each type of WBC multiplied by the total WBC
White Blood Cell Counts: Normal Ranges

<table>
<thead>
<tr>
<th>Age</th>
<th>WBC</th>
<th>PMN</th>
<th>Band</th>
<th>Lymph</th>
<th>Mono</th>
<th>Eos</th>
<th>Baso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth (0-1m)</td>
<td>6-30K</td>
<td>42-80%</td>
<td>2%</td>
<td>26-36%</td>
<td>3-8%</td>
<td>0-5%</td>
<td>0-2%</td>
</tr>
<tr>
<td>Child (1m – 12m)</td>
<td>6-18K</td>
<td>18-44%</td>
<td>3%</td>
<td>46-76%</td>
<td>3-8%</td>
<td>0-5%</td>
<td>0-2%</td>
</tr>
<tr>
<td>Child (1y – 16y)</td>
<td>5-14K</td>
<td>37-75%</td>
<td>3%</td>
<td>25-57%</td>
<td>3-8%</td>
<td>0-5%</td>
<td>0-2%</td>
</tr>
<tr>
<td>Adult</td>
<td>4-10K</td>
<td>36-75%</td>
<td>2%</td>
<td>20-50%</td>
<td>3-8%</td>
<td>0-5%</td>
<td>0-2%</td>
</tr>
</tbody>
</table>
White Blood Cell Counts: Disease States

<table>
<thead>
<tr>
<th></th>
<th>WBC</th>
<th>PMN</th>
<th>Band</th>
<th>Lymph</th>
<th>Mono</th>
<th>Eos</th>
<th>Baso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial Infection</td>
<td>16K↑</td>
<td>79%↑</td>
<td>8%↑</td>
<td>8%</td>
<td>3%</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>Steroid Therapy</td>
<td>12K↑</td>
<td>79%↑</td>
<td>4%</td>
<td>14%</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Splenectomy</td>
<td>13K↑</td>
<td>50%</td>
<td>2%</td>
<td>40%</td>
<td>5%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Viral Infection</td>
<td>3.5K↓</td>
<td>50%</td>
<td>2%</td>
<td>40%</td>
<td>5%</td>
<td>2%</td>
<td>1%</td>
</tr>
<tr>
<td>Chemo</td>
<td><3K↓</td>
<td>65%</td>
<td>0%</td>
<td>20%</td>
<td>12%↑</td>
<td>2%</td>
<td>1%</td>
</tr>
</tbody>
</table>

J. Levine
Neutrophil Maturation

Bone Marrow

<table>
<thead>
<tr>
<th>Phase</th>
<th>Percentage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferation</td>
<td>25%</td>
<td>6-7 days</td>
</tr>
<tr>
<td>Maturation</td>
<td>65%</td>
<td>6-7 days</td>
</tr>
<tr>
<td>Intravascular</td>
<td>8%</td>
<td>12 h</td>
</tr>
<tr>
<td>Tissues</td>
<td>2%</td>
<td>12 h</td>
</tr>
</tbody>
</table>

J. Levine
Neutrophil Maturation - Proliferative Phase

Proliferation 25%

Source Undetermined (All Slides)

Myeloblast Promyelocyte Myelocyte
65% of myeloid cells

Maturation 6-7 days

Metamyelocyte → Band → Neutrophil

Source Undetermined (All Slides)
Fate of the mature neutrophil

<table>
<thead>
<tr>
<th>Circulating</th>
<th>Marginating</th>
</tr>
</thead>
<tbody>
<tr>
<td>8%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Intravascular 12 h Tissues 12 h

Approximately 10% of the developing neutrophils are in the circulation, marginated or in the tissue.
Disorders of Neutrophil Numbers

Definition

Neutropenia
Less than 1500/µl

Acquired
Or
Inherited

Neutrophilia
Greater than 7700/µl
Definition of Neutrophilia - too many

- Normal ANC is 1500-7700/µl
- Neutrophilia: abnormally high ANC
- Shift to the left: ↑’d release of precursors from the bone marrow
 – not necessarily associated with neutrophilia
Neutrophilia

• Acute shift from marginalizing to circulating pool
 – ↑ measured WBC, not total WBC

• Causes:
 – Steroid treatment
 – Exercise
 – Epinephrine
 – Hypoxia
 – Seizures
 – Other stress

• Chronic Stimulation
 – Excess cytokine stimulates proliferative pool

• Causes:
 – Infection
 – Down's Syndrome
 – Pregnancy/Eclampsia
 – Chemotherapy recovery
 – Myeloproliferative disorders
 – Marrow metastases
Example: exercise induced neutrophilia
Neutropenia: too few

• Neutropenia
 – Definition: ANC < 1500/µl
 – ANC 500-1000 increased risk of infection from exposure
 – ANC < 500: increased risk of infection from host organisms

• African-Americans: lower normal neutrophil counts (1000-1200)
Acquired Causes of Neutropenia

<table>
<thead>
<tr>
<th>Decreased Production</th>
<th>Increased Destruction</th>
<th>Shift to Marginating Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone marrow</td>
<td>Peripheral circulation</td>
<td>Move from the circulating pool to attach along the vessel wall</td>
</tr>
<tr>
<td>Medication:</td>
<td>Autoimmune diseases</td>
<td>Severe infection</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>(Rheumatoid arthritis, SLE, etc)</td>
<td>Endotoxin release</td>
</tr>
<tr>
<td>Antibiotics, etc</td>
<td></td>
<td>Hemodialysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cardiopulmonary bypass</td>
</tr>
</tbody>
</table>
Increased Destruction

Anti-neutrophil antibody

Neutrophil-Antibody Complex

Uptake and destruction of neutrophil by the RE system
Shift to Marginating Pool

Severe infection / Endotoxin release
Hemodialysis
Cardiopulmonary bypass
Evaluation of Neutropenia

• If visit prompted by a fever and ANC is low, treat promptly for infection
• Suspect medication: major cause of neutropenia
• If no culprits, bone marrow exam for:
 – Malignancy
 – Infiltration by non-marrow cells
 – Arrest of cell growth
 – Myeloproliferative disorder
Cyclic Neutropenia

- 21 day cycle
- autosomal dominant
- fever, mouth ulcers
- Treatment G-CSF
- usually improves after puberty

Figure: Blood cell counts of Patient No. 15 show regular 21 day cyclic variation. Note that monocytes and reticulocytes tend to rise when the neutrophils fall.
Congenital Neutropenia

- Maturation arrest
- Frequent infections, often serious
- Mouth sores
 - May lose teeth or develop severe gum infections
- Increased risk of leukemia
- Tx: G-CSF, BMT
Role of Neutrophil

- Responds to **chemotactic factors** released from damaged tissue
- **Rolls and attaches** to the endothelial cell wall
 - protein and carbohydrate interactions (selectins and their ligands).
- Becomes **activated** by chemotactic factors
- **Tightly adheres** through the integrin family of proteins.
- **Migrates** across the endothelial cell wall.
- **Phagocytizes** organisms so that they are contained within a vesicle or phagosome.
- **Releases granule products** and reduced oxygen species (e.g. hydrogen peroxide and superoxide) to kill organisms.
Function of the Circulating Neutrophil

Attachment/rolling Activation Adhesion Migration

Chemoattractant Phagocytosis

J. Levine
Disruption of Neutrophil Function

• Steps where defects in structural components of neutrophils results in impaired ability to fight infection
 – Recruitment from the circulation
 – Adhesion and subsequent migration
 – Defective production in active oxygen metabolites
 – Deficiency in granules
Defect in Attachment/Rolling

Attachment/rolling

Cell surface molecules expressing Sialyl Lewis X interact with selectin proteins on the cell surface of endothelial cells.

Sialyl Lewis X

Selectins

LAD-2 Impaired expression of sialyl LewisX - Neutrophils do not attach and are not recruited to the site of inflammation.

Chemoattractant

J. Levine
Defect in Adhesion

Integrins on the surface of neutrophils mediate tight adhesion to the endothelial cell wall. Cells then migrate.

LAD-1 results from a defect in leukocyte integrins. Decreased to absent expression on the cell surface. Cells cannot adhere and subsequently cannot migrate.
Clinical manifestations: LAD
Phagocytosis

Chemoattractant

Chediak-Higashi Syndrome: Defect in granule formation

CGD: NADPH-Oxidase-defective
Cannot produce active oxygen species

Bacteria are engulfed and contained in a phagosome.
Contents of the granules are released.
Oxygen metabolites (superoxide and H$_2$O$_2$) kill bacteria

J. Levine
- Oculocutaneous albinism
 - Photophobia
 - Sun sensitivity
- Neuropathy
- Infections, esp Staph aureus

- TX: BMT
Chronic granulomatous disease (CGD)
Chronic granulomatous disease: CGD

- Catalase positive organisms
 - Staph aureus
 - Serratia marcescens
 - Burkholderia cepacia
 - Fungal
- Skin, lungs, bones, abscesses
- Granuloma formation from chronic infection
Myeloperoxidase deficiency

• One of the more common disorders
 – 1: 4000
• Decreased production of hypochlorous acid (HOCl)
• Killing takes longer than normal
• Clinically silent for most people
Diseases with Neutrophil Defects

<table>
<thead>
<tr>
<th>Disease</th>
<th>Step</th>
<th>Molecular Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAD-2</td>
<td>Rolling</td>
<td>Sialyl Lewis X Carbohydrate</td>
</tr>
<tr>
<td>LAD-1</td>
<td>Adhesion</td>
<td>Integrin expression</td>
</tr>
<tr>
<td></td>
<td>Phagocytosis</td>
<td></td>
</tr>
<tr>
<td>Chediak-Higashi Syndrome</td>
<td>Migration</td>
<td>Vacuolar sorting protein (large granules interfere with traversing endothelial wall)</td>
</tr>
</tbody>
</table>
Diseases with Neutrophil Defects

<table>
<thead>
<tr>
<th>Disease</th>
<th>Step</th>
<th>Molecular Defect</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGD</td>
<td>Oxidative burst</td>
<td>NADPH oxidase</td>
</tr>
<tr>
<td>Myeloperoxidase Deficiency</td>
<td>Oxidative burst</td>
<td>HOCl Production</td>
</tr>
</tbody>
</table>
Monocyte-Macrophages

- Monocytes: circulating precursor of the tissue macrophage.
- Also known as the reticuloendothelial system
- Average count 300 cells/µl
- Range 0-800 cells/µl
Monocyte Differentiation

- Proliferation: 30-48 hours
- Maturation: 24 hours
- Intravascular: 72 h
- Tissue: Differentiation into Macrophages

Bone Marrow

Source Undetermined
Function of Monocytes and Macrophages

Antigen presentation of phagocytized particles to T Cells

Cytokines/chemokines
Monocyte Function

Follow neutrophils to sites of inflammation within 12-24h
Number 1/30th that of neutrophils
Pts w/ CGD, CHS and LAD also have defects in monocyte fxn
Disturbances in Monocytes

• Low counts
 – glucocorticoids
 – stress

• Elevated counts
 – Malignancy
 – Granulomatous disease
 – Marrow recovery
 – Infections
 • malaria
 • TB
 • Rocky Mountain Spotted fever
 • leishmaniasis
 • brucellosis
Eosinophils

Proliferation

Maturation

Intravascular

Tissues

9 days

2.5 days

3-8 hours

Bone Marrow

Myelocyte

Eosinophil

Source Undetermined (Both Slides)
Eosinophil Function

- Bright red granules
- IgE on cell surface (not on neutrophils)
- Play a key role in killing parasites
- Average absolute count 200/µl
- Non allergic individuals usually <400/µl
Eosinophilia

• **Conditions:**
 – **Neoplasm** (Hodgkin’s disease, lymphoma other tumors)
 – **Allergies**—drugs, environmental (grass, trees, dust)
 – **Asthma**
 – **Collagen vascular diseases**—vasculitis
 – **Parasitic infection**

• **Idiopathic hypereosinophilia:** elevated eosinophil count associated with organ dysfunction (GI, skin, CNS, cardiovascular).
 – > 5000/µl requires treatment with immunosuppressives and antihistamines
Maturation of Basophils and Mast Cells

Intravascular Tissues

Proliferation

Maturation

2.5 days

7 days

days

Basophil

Mast Cell

Proliferation

Maturation in Tissues

J. Levine
Basophil Function

• Basophils and mast cells
 – Function remains obscure but may play a role in host defense against certain parasites
Disturbances in Basophil Count

- Low count
 - hypersensitivity
 - glucocorticoids

- High count
 - Allergies
 - infection
 - endocrinopathies
 - myeloproliferative disorders
 - Systemic mastocytosis
 - symptoms due to excess histamine release
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy
Slide 6: Source Undetermined (Both Images)
Slide 8: John Levine
Slide 9: John Levine
Slide 10: John Levine
Slide 11: John Levine; Source Undetermined (All Slides)
Slide 12: John Levine; Source Undetermined (All Slides)
Slide 14: Source Undetermined
Slide 17: Source Undetermined
Slide 20: John Levine
Slide 21: John Levine
Slide 23: Source Undetermined
Slide 24: Source Undetermined
Slide 26: John Levine
Slide 28: John Levine
Slide 29: John Levine
Slide 30: Source Undetermined (Both Images)
Slide 31: John Levine
Slide 32: Source Undetermined
Slide 33: W. B. Saunders Adv Neonatal Care
Slide 34: Source Undetermined
Slide 40: Source Undetermined
Slide 41: John Levine
Slide 42: John Levine
Slide 44: John Levine; Source Undetermined (Both Slides)
Slide 47: John Levine