Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
M1 - GI Sequence

Colon and Review

John Williams, M.D., Ph.D.

Winter, 2009
THE HUMAN COLON

Functions
1. Storage
2. Absorption of salt and water
3. Digestion and Absorption
Response of the Ileoceleal Sphincter to distension of the Ileum or Cecum

These are local reflexes in the myenteric plexus.
Colonic Motility

1. Slow wave frequency variable but highest in transverse colon and the rectum (11/min)

2. Contractions increase after feeding

3. Mass Peristalsis after a meal termed the “Gastro-Colic reflex
The Process of Haustral Shuttling and Propulsion

A. A quiescent segment of colon.

B. Haustral shuttling with no net movement of chyme.

C. Haustral shuttling with propulsion of chyme from one haustrum to another.

D. Multihastral propulsion with movement of chyme through several haustra.

Contractions increase after feeding

Fig. 8-6 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.
Response of the Rectum and Anal Sphincters to Rectal Distension

Fig. 8-9 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.
Hirschsprung's Disease

1. Myenteric plexus in colon normally exerts a net inhibitory influence.

2. When neurons are absent in rectum the aganglionic Segment is contracted resulting in a large distended Colon.

3. Treatment is to surgically remove the segment.
The Effect of Dietary Fiber on Colonic Transit Time and Stool Weight

Fig. 8-8 Granger, D, et al. *Clinical Gastrointestinal Physiology*. W.B. Saunders, Philadelphia, PA; 1985.
Normally about 1 to 1½ liters per day of flatus

<table>
<thead>
<tr>
<th>Gas</th>
<th>Stomach (%)</th>
<th>Intestine (%)</th>
<th>Flatus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>79</td>
<td>64</td>
<td>61.2</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>4</td>
<td>14</td>
<td>8.1</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0</td>
<td>19</td>
<td>19.8</td>
</tr>
<tr>
<td>Methane</td>
<td>0</td>
<td>8.8</td>
<td>7.3</td>
</tr>
<tr>
<td>Oxygen</td>
<td>17</td>
<td>0.7</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Swallowed air and *Bacterially Produced*

Source Undetermined
Role of the Cecum in Fermentation and Absorption

Magnitude of the Bacterial Population in the Gut

Fig. 8-4 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.
Hydrogen gas production in the small intestine and colon in response to lactose ingestion of certain foods such as beans rich in indigestible carbohydrates leads to massive increase in hydrogen content and increased flatus.

Ion Transport Pathways in the Human Colon

Fig. 12-3 Johnson, L. Gastrointestinal Physiology, 7th ed. Mosby Elsevier, Philadelphia, PA; 2007: 130.
Relationship Between Ileocecal Flow, Colonic Water Absorption and Stool Water in Health and in Various Disease States

Fig. 8-2 Granger, D, et al. *Clinical Gastrointestinal Physiology*. W.B. Saunders, Philadelphia, PA; 1985. Modified (see additional source information).
DISACCHARIDES:
- Maltase
- Sucrase
- Lactase
- Isomaltase

PEPTIDASES:
- Aminopeptidase
- Carboxypeptidase
- Dipeptidase
- Enterokinase

Amylase
Pepsin
Lipase
Amylase
Trypsin
Chymotrypsin
Carboxypeptidase
Elastase
Lipase - Colipase
Phospholipase A2
Cholesterol esterase - nonspecific lipase

Fig. 9-1 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.
The Interdigestive Period

Fig. 9-2 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.
The Cephalic Phase

The Gastric Phase

Fig. 9-4 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.
The Early Intestinal Phase
The Late Intestinal Phase

Fig. 9-1 Granger, D, et al. *Clinical Gastrointestinal Physiology*. W.B. Saunders, Philadelphia, PA; 1985.
The Interdigestive Period

Fig. 9-2 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 5 – Fig. 7-30 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.

Slide 7 – Fig. 8-6 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.

Slide 8 – Fig. 8-9 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.

Slide 10 – Fig. 8-8 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.

Slide 11 – Source Undetermined

Slide 13 – Fig. 8-4 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.

Slide 17 – Fig. 9-1 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.

Slide 18 – Fig. 9-2 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.

Slide 19 – Fig. 9-3 Granger, D, et al. Clinical Gastrointestinal Physiology. W.B. Saunders, Philadelphia, PA; 1985.
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 20 – Fig. 9-4 Granger, D, et al. *Clinical Gastrointestinal Physiology*. W.B. Saunders, Philadelphia, PA; 1985.
Slide 21 – Fig. 9-6 Granger, D, et al. *Clinical Gastrointestinal Physiology*. W.B. Saunders, Philadelphia, PA; 1985.
Slide 22 – Fig. 9-1 Granger, D, et al. *Clinical Gastrointestinal Physiology*. W.B. Saunders, Philadelphia, PA; 1985.
Slide 23 - Fig. 9-2 Granger, D, et al. *Clinical Gastrointestinal Physiology*. W.B. Saunders, Philadelphia, PA; 1985.