Drug Absorption and Distribution

Friday, January 18, 2008
10:00 AM

1. Define absorption and distribution.
 a. Absorption: passage of drugs from site of administration to the blood
 b. Distribution: delivery of drugs to tissue

2. Describe the mechanisms that are responsible for transport of drugs across membranes.
 a. Diffusion: concentration gradient driven; unionized form
 b. Filtration and bulk flow through pores
 c. Endocytosis
 d. Ion-pair
 e. Facilitated diffusion or active transport
 i. Carrier mediated
 ii. Saturable
 iii. Selective
 iv. Competition

3. Define lipid-water partition coefficient.
 a. Amount of drug in organic phase/amount of drug in aqueous phase
 b. A high coefficient means high lipid solubility
 c. No ideal solvent to mimic cell membrane

4. What functional groups alter the lipophilicity of drugs?
 a. Non-polar groups: alkyls, aromatics, hexanes, ethers, ketones, esters, amides, halogens
 b. Polar: O, nitrate, carboxylic acids, hydroxyls, sulfates, ammonium

5. Calculate the ionization of drugs with the use of the Henderson-Hasselbalch equation.
 a. Acid: pH-pKa = log ([ionized]/[non-ionized])
 b. Base: pH-pKa = log ([non-ionized]/[ionized])

6. Describe how the ionization and lipophilicity of drugs affect the absorption and distribution of drugs.
 a. Non-ionization increases absorption and distribution (easier to cross blood-brain barrier)
 b. Increased lipophilicity also increases absorption/distribution

7. Define “ion trapping”
 a. Drugs get stuck in compartments due to a high proportion being ionized due to pH changes
 b. Example is diazepam; pKa = 3.3 so in stomach is almost completely ionized and none enters plasma; acetaminophen is a weak acid so it is almost completely unionized in the stomach and crosses into plasma

8. Describe how drug-drug interactions occur through drug transporters.
 a. Because drug transporters often handle multiple substrates there is competition for the transporter
 b. St. John's Wort for example induces the P-glycoprotein transporters to send the drug back out into the intestinal lumen, so St. John's Wort results in decreased drug absorption; grapefruit juice inhibits the transporter so it increases absorption

9. Describe how binding to plasma proteins can affect distribution of a drug.
 a. Alters free drug concentration; binds to drug and decreases amount available to tissues
 b. Some drugs are almost completely bound at their therapeutic concentration
 c. Must account for amount bound; so some drugs plasma concentrations rapidly jump once plasma protein is all used up

Pharmacology Page 1