Drug Metabolism Part II

Wednesday, January 23, 2008
10:00 AM

1. Define Phase II enzymes. What are the reactions catalyzed by these enzymes?
 a. Drug + Cofactor → Conjugated Drug
 i. Glucuronidation: UDP-Glucuronosyl transferase
 ii. Glutathione conjugation: Glutathione S-transferase
 iii. Sulfation: Sulfotransferase
 iv. Acetylation: N-Acetyltransferase
 v. Methylation: no enzyme named
 vi. Other

2. What are the cofactors needed for these enzymes?
 a. UDP-Glucuronosyl transferase: UDPGA
 b. Glutathione conjugation: glutathione, Acetyl-CoA
 c. Sulfotransferase: 3-Phosphoadenosine-4-phosphosulfate (PAPS)
 d. Acetylation: Acetyl-CoA
 e. Methylation: SAM
 f. Other

3. Recognize functional groups on drugs that can be conjugated Phase II enzymes. Determine possible products.
 a. Glucuronidation
 i. R-OH + UDPGA → Glucuronide-OR + UDP
 ii. R-COOH + UDPGA → Glucuronide-OC(O)R + UDP
 iii. R-NH2 + UDPGA → Glucuronide-NHR + UDP
 iv. R-SH + UDPGA → Glucuronide-OR + UDP
 v. Mutations in enzyme cause Crigler-Najjar and Gilbert's b/c bilirubin can't be conjugated and excreted in urine
 b. Glutathione conjugation
 i. RX + HS-Glutathione → R-S-Glutathione + HX
 ii. Gamma-Glutamyltranspeptidase: R-S-Glutathione → R-S-Cysteine-Glycine + Glu
 iii. Aminopeptidase M: R-S-Cysteine-Glycine → RS-Cysteine + Gly
 iv. N-Acetyltransferase: RS-Cysteine + Acetyl-CoA → mercapturic acid
 v. Beta lyase: RS-Cysteine → R-SH
 vi. Thermodynamically favored so can happen w/o first enzyme, just slower
 vii. Protective mechanism against epoxides
 c. Sulfation
 i. R-OH + PAPS → R-O-SO3 + PAP
 ii. High affinity, low capacity
 iii. Can convert certain drugs to carcinogenics
 d. Acetylation
 i. Requires Acetyl-CoA
 ii. -NH2 → NHCOCH3
 e. Methylation
 i. Common but minor, doesn't always make it more polar
 ii. Requires SAM
 iii. O-Methylation: -OH → -OCH3
 iv. N-Methylation: -NHR → -N(CH3)R
 v. S-Methylation: -SH → -SCH3
 f. Other