Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- Public Domain – Government: Works that are produced by the U.S. Government. (USC 17 § 105)
- Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
- Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
- Creative Commons – Zero Waiver
- Creative Commons – Attribution License
- Creative Commons – Attribution Share Alike License
- Creative Commons – Attribution Noncommercial License
- Creative Commons – Attribution Noncommercial Share Alike License
- GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
How many take aspirin, ibuprofen, tylenol, naproxen?

Why???
INFLAMMATORY MEDIATORS

PLASMA DERIVED

• COMPLEMENT CASCADE
 C3a, C5a

• COAGULATION CASCADE
 Thrombin, plasmin

CELL-DERIVED

• VASOACTIVE AMINES
 histamine, serotonin

• OXYGEN METABOLITES
 hydrogen peroxide (H₂O₂)
 superoxide anion (O₂⁻)
 hypochlorous acid (HOCl⁻)

• ARACHIDONIC ACID METABOLITES
 cyclooxygenase-derived
 lipoxygenase-derived

• CYTOKINES
 Interleukins
 Chemokines
 Interferons
 Growth Factors
 Tumor Necrosis Factor
Intended Learning Outcomes
To Understand The:

- Primary inflammatory mediators derived from the metabolism of arachidonic acid including their primary cellular source and biological activity.

- Effects of nonsteroidal anti-inflammatory compounds on blocking the production of arachidonic acid metabolites during disease.

- Mechanism of aspirin therapy and diets rich in fish containing high levels of omega 3 fatty acids as potentially important in lowering the incidence of cardiovascular disease.
What is Arachidonic Acid?
How And Where Is Arachidonic Acid Generated?
Lipid Mediators of Inflammation

Stimulus

+ Phospholipase

Cell membrane Phospholipids

Arachidonic acid

J. Fantone
What are the primary products derived from arachidonic acid?

- Cyclooxygenase (COX)
- Lipoxygenase (LO)
Acute inflammation: lipid mediators

Stimulus

Cell membrane
Phospholipids

\[\text{Arachidonic acid} \]

+ Phospholipase

\[\text{COX-1+2} \]

Prostaglandins

\[\text{Prostaglandin E}_2 \]

\[\text{Prostaglandin PGI}_2 \]

\[\text{COX-1} \]

Thromboxanes

\[\text{TXB}_2 \]

\[\text{Lipooxygenases (5-LO)} \]

Leukotrienes

\[\text{LTB}_4 \]

\[\text{LTC}_4, \text{LTD}_4 \]

J. Fantone
<table>
<thead>
<tr>
<th>CELL</th>
<th>PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>Leukotrienes</td>
</tr>
<tr>
<td>Macrophage/Monocyte</td>
<td>Prostaglandins + Leukotrienes</td>
</tr>
<tr>
<td>Platelets</td>
<td>Thromboxoxane</td>
</tr>
<tr>
<td>Endothelial Cells</td>
<td>Prostacyclin</td>
</tr>
</tbody>
</table>
In Vivo Effects of Arachidonic Acid Derived Products: Regulates

- Thermostatic Set Point (Fever)
- Pain (Interacts with pain receptors)
- Blood Flow
- Leukocyte Activity
- Platelet Function
Biological Function of Arachidonic Acid Products

Cyclooxygenase-derived Products:

Prostaglandin E$_2$/Prostacycllin
- Inhibits immune cell activation
- Inhibits cytokine production
- Inhibits mast cell activation
Blocks platelet aggregation
Increases vasodilation

Thromboxane
Causes vasoconstriction
Induces platelet aggregation
The Homeostatic Balance

Endothelium
PGI$_2$

Platelets
TXA$_2$
Production of Fever

Hypothalamus Thermoregulatory Area

Endogenous pyrogens (Interleukins -1,-6)

Exogenous pyrogens (bacterial products)

Arachidonic acid

Prostaglandins

Increase temp set-point

COX inhibitors (aspirin)
Biological Function

Lipoxygenase-derived Products:

<table>
<thead>
<tr>
<th>Component</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukotriene B<sub>4</sub></td>
<td>Neutrophil Activation</td>
</tr>
<tr>
<td></td>
<td>- chemotaxis</td>
</tr>
<tr>
<td></td>
<td>- degranulation</td>
</tr>
<tr>
<td>Mast cell activation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- degranulation</td>
</tr>
<tr>
<td>Leukotriene C,D,E (SRS-A)</td>
<td>Smooth muscle contraction</td>
</tr>
<tr>
<td></td>
<td>Increase vascular permeability</td>
</tr>
</tbody>
</table>
Pharmacologic Regulation of Arachidonic Acid-Derived Products: Modulate

• Phospholipase activity:
 – Suppress the release of arachidonic acid (no substrate available)
 – Blocks both COX and LO-derived products

• Cyclooxygenase Activity:
 – Blocks Cyclooxygenase-derived products
 – COX-1 and COX-2 inhibitors

• Specific enzymes down-stream from COX:
 – Thromboxane synthetase inhibitors

• Lipoxygenase activity:
 – Block 5-lipoxygenase enzyme
 – Small molecule receptor antagonists for cysteinyI leukotrienes
Non-Steroidal Anti-Inflammatory Compounds; NSAIDS

• Aspirin (acetylsalicylic acid)
• Ibuprofen (propionic acid derivatives)
• Indomethacin (indole derivatives)
• Tylenol (acetaminophen)
• COX-2 Inhibitors (Vioxx, celebrex, Bextra)
COX-2 Inhibitors

- **CELEBREX** (Celecoxib) Pfizer-(Pharmacia)
- **BEXTRA** (Valdecoxib) Pfizer
- **VIOXX** (Rofecoxib) Merck

Osteoarthritis
Rheumatoid arthritis
Primary dysmenorrhea
Pain management
Aspirin

• Irreversible inhibition of cyclooxygenase
• Acetylates active site of enzyme
• Decreased production of products (e.g. prostaglandins, prostacyclins & thromboxanes)
NSAIDS: Inhibit cyclooxygenase: reversible binding to active site of enzyme
About 80 million aspirin tablets are consumed daily in the USA. Of those:

72% are taken for disease prevention

28% are taken for pain
The Homeostatic Balance

Endothelium
PGI₂

Platelets
TXA₂
Aspirin Anti-thrombogenic Activity

- Inhibits platelet aggregation; blocks platelet-derived thromboxane production

- Blocks platelet cyclooxygenase for the life of the platelet; no new protein synthesis

- Blocks endothelial cell-derived prostacyclin

- Suppression of endothelial cell-derived prostacyclin is short lived as endothelial cells can generation new cyclooxygenase enzyme

- Platelet activity is blocked more than endothelial cell activity
Acute inflammation: lipid mediators

An important role in vascular homeostasis

- Endothelium
- Platelets

Prostacyclin PGI$_2$ <-> TXB2

Anti-thrombotic <-> Pro-thrombotic
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

- Aspirin inhibits COX-2 irreversibly

Platelets

- Aspirin inhibits COX-1 irreversibly

Prostacyclin PGI₂

- All cells but the platelet can resynthesize the enzymes

TXB₂

Anti-thrombotic

Pro-thrombotic
Acute inflammation: lipid mediators

Prostacyclin PGI\(_2\) TXB2

Endothelium Platelets

COX-2 COX-1

Prostacyclin PGI\(_2\) TXB2

Anti-thrombotic Pro-thrombotic

NSAIDs inhibit both COX-1 and COX-2; COXIBs inhibit COX-2

J. Fantone
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium
- COX-2
- Prostacyclin PGI₂
- Anti-thrombotic

Platelets
- COX-1
- TXB₂
- Pro-thrombotic

Ibuprofen* inhibits both COX enzymes (COX-1 and COX-2).

* Classical NSAID, it inhibits both COX enzymes.
COX-2 inhibitors work by blocking COX-2 enzyme which is involved in gastrointestinal toxicity is reduced the inflammation pathway. By sparing COX-1
Acute inflammation: lipid mediators

Therapeutic targets

Endothelium

- Prostacyclin (PGI$_2$)

Platelets

- TXB2

COX-2

COX-1

Vioxx®

Anti-thrombotic

Pro-thrombotic

J. Fantone
Fish Oil: Protective Effects

Eicosapentaenoic Acid

Arachidonic Acid

Omega-3

Omega-6

Source Undetermined

Source Undetermined
Acute inflammation: lipid mediators

Stimulus

Cell membrane
Phospholipids

Phospholipase

Arachidonic acid

COX-1+2

Prostaglandins

Prostaglandin E₂
Prostacyclin PGI₂

COX-1

Thromboxananes

TXB₂

Lipooxigenases (5-LO)

Leukotrienes

LTB₄
LTC₄, LTD₄

J. Fantone
Thank You
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 7: J. Fantone
Slide 9: J. Fantone
Slide 10: Source Undetermined
Slide 12: J. Fantone
Slide 13: Source Undetermined
Slide 17: Regents of the University of Michigan
Slide 18: J. Fantone
Slide 23: Source Undetermined
Slide 24: Source Undetermined
Slide 25: Regents of the University of Michigan
Slide 26: Regents of the University of Michigan
Slide 28: J. Fantone
Slide 29: J. Fantone
Slide 30: J. Fantone
Slide 31: J. Fantone
Slide 32: Source Undetermined
Slide 33: J. Fantone
Slide 34: Source Undetermined; Source Undetermined
Slide 35: J. Fantone