Attribution: University of Michigan Medical School, Department of Microbiology and Immunology

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Noncommercial–Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Phagocytic Cells: Mechanisms of Bacterial Injury and Tissue Injury

M1 – Immunology Sequence
Joseph Fantone, MD
Phagocytic Cells: Mechanisms of Bacterial Killing and Tissue Injury

• Learning Outcomes:
 – To understand the pathophysiologic role of phagocytic cells in host defense.
 – To understand the role of reactive oxygen metabolites and lysosomal granules in phagocytic cell function.
Phagocytic Cells

- Peripheral Blood Leukocytes (nrml. 4.5-11,000 cells/ul)
 - Lymphocytes (~ 30%)
 - Granulocytes (~ 70%)

- Granulocytes:
 - Neutrophils (~ 60% of total leukocytes in blood)
 - Eosinophils (~ 3%)
 - Basophils (<1%, rare)
 - Monocytes (~ 6%)

- Monocytes → Macrophages (tissues)

- Kupffer cells (lining liver sinusoids)
Peripheral Blood Smear

Neutrophil

Lymphocyte
Neutrophil
Monocyte
Neutrophils and Macrophages

• Function:
 – Ingest foreign material
 – Kill bacteria and other microbes
 – Degrade necrotic tissue and foreign antigens

• Tissue damage during prolonged inflammation
Neutrophil Recruitment

Selectins/Addressins \rightarrow β_2-Integrin/ICAM-1

flow \rightarrow rolling \rightarrow adhesion \rightarrow transmigration

Tissue Injury (e.g. Bacterial infection)

endothelium

inflammatory mediators

- phagocytosis
- oxidant production
- lysosomal granules

chemoattractant (e.g. IL-8, C5a)
Phagocytic Cell Activation: Chemotactic Factors

Other receptors:
Toll-like receptor
Mannose receptor

G-protein tyrosine kinases

protein phosphorylation

phosphoinositide metabolism

↑ IP3
↑ Ca^{2+}

functional responses
Phagocytic Cell Functional Responses

- Adhesion (localization)
- Chemotaxis (migration)
- Phagocytosis
- NADPH oxidase activation
- Lysosomal granule fusion: degranulation
Opsonization and Phagocytosis

- Protein recognized by phagocytic cell binds to bacteria surface
- Enhances phagocytosis
 - Antibody, IgM
 - Complement
 - Mannose binding protein

Fc receptors: IgG, IgM
C3b receptors
MBP receptors
Neutrophil Phagocytosis of Bacteria

Opsonization of Bacteria

Fc, C3b binding

Phagosome formation

Phagolysosome
Cell phagocytosis

Oxygen radicals

Elastase
Collagenase
Acid hydrolases
Respiratory Burst: NADPH Oxidase

Oxygen Levels (% of max.)

Time (minutes)

Stimulus added

Patient

Normal

J. Fantone
Reactive Oxygen Metabolites

Superoxide anion: O_2^-

$O_2 + e^- \rightarrow O_2^-$

Hydrogen peroxide: H_2O_2

$2O_2^- + 2H^+ \rightarrow H_2O_2 + O_2$

Hydroxyl radical: OH .

$H_2O_2 + Fe^{2+} \rightarrow OH^- + OH^- + Fe^{3+}$

Hypochlorous acid: $HOCl$

$H_2O_2 \rightarrow HOCl + OH^-$

myeloperoxidase = MPO

Chronic Granulomatous Disease of Childhood (CGD): deficiency of NADPH Oxidase
Nitric Oxide (NO) Synthase

L-arginine → NO radical → hydroxyl radical → peroxynitrites

- Endothelial cell
- Macrophages (inducible): intracellular cytotoxic agent
- Nervous system
Oxidant Targets

a) unsaturated lipids: lipid peroxidation
 LOOH = lipid hydroperoxides

c) proteins
 - sulfhydryl groups
 - methionine
 - tyrosine

d) nucleic acids
Degranulation

• **Bactericidal proteins** (e.g. defensins)
• **Proteases**
 – serine proteases (e.g. elastase)
 – metalloproteinases (e.g. collagenase, gelatinase)
• **Acid hydrolases**
Oxidants
Proteases

Anti-oxidants
Anti-proteases
Pneumonia and Abscess

J. Fantone
Protective Mechanisms

Anti-oxidant: specific vs. non-specific

Specific enzymes:

Superoxide dismutase: \(2O2^- + 2H+ \rightarrow H2O2 + O2 \)

Catalase: \(2H2O2 \rightarrow 2H2O + O2 \)

Glutathione peroxidase: \(H2O2 + 2GSH \rightarrow 2H2O + GSSG \)

\(LOOH + 2GSH \rightarrow H2O + LOH + GSSG \)

LOOH = lipid hydroperoxides
GSH = reduced glutathione
GSSG = oxidized glutathione
Non- specific scavengers:

- Vitamin E
- Vitamin C
- Beta-carotene
Anti-proteases

- α-1- anti-protease (anti-trypsin):
 - plasma protein
 - binds proteases including elastase
 - inactivated by oxidants
- α-2- macroglobulin
 - plasma protein
 - binds proteases
- TIMPs: tissue inhibitors of metalloproteininases
 - cell derived
Synergism: Inactivation of alpha-1-anti-trypsin

1. **HOCl Dependent**
 - PMNs → HOCL
 - HOCL → a-1-antitrypsin (active)
 - a-1-antitrypsin (inactive)

2. **Metalloproteinase Dependent**
 - PMNs → Metalloproteinase (collagenase)
 - Metalloproteinase (collagenase) → a-1-antitrypsin (active)
 - a-1-antitrypsin (inactive)
Case: A 3 year old boy is brought to the emergency department

- **CC**: a productive cough, fever (temp 102.1°C), and headache.
- **PEx**: healthy boy with rales present on auscultation of the left lower chest.
- **CxR**: intra-alveolar infiltrate in the left lower lobe.
- **Hx**: mother reports multiple episodes (approx. 5 per year) of recurrent bacterial infections including otitis media, sinusitis, pneumonia, and purulent skin lesions. These infections usually responded to antibiotic treatment.
List three different mechanisms that could account for this patient's increased susceptibility to bacterial infection:

1. ___

2. ___

3. ___
Neutrophil Recruitment

Selectins/Addressins \rightarrow β_2-Integrin/ICAM-1

flow \rightarrow rolling \rightarrow adhesion \rightarrow transmigration

Tissue Injury (e.g. Bacterial infection)

endothelium

inflammatory mediators

chemoattractant (e.g. IL-8, C5a)

- phagocytosis
- oxidant production
- lysosomal granules

Regents of the University of Michigan
Mechanisms Associated with Increased Susceptibility to Bacterial Infection:

1. Lack of neutrophils: leukopenia
2. Defective neutrophil function
 - Adhesion / migration
 - Phagocytosis
 - Bacterial killing
3. Lack of chemoattractants: deficiency
4. Lack of opsoninization of bacteria
 - antibody deficiency / complement def.
Phagocytic Cells:
Parham, The Immune System (2nd ed.): pgs. 15-17, 202-209.
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy