Joining variable and constant regions

Wednesday, February 13, 2008
9:00 AM

• λ light chain
 o L1-VA1 up to LVλ-29 --- J1-C1---J2-C2---...
 o Multiple C-λ genes, each w/ one J region
 o J defines which constant region is used

• κ light chain
 o L1-Vk1 up to Lvk-40---Jka1-5--Ck
 o Only one Ck gene

• Heavy chain
 o LVheavy51---Dheavy1-27---Jheavy1-6---Cμ
 o D segments encode 2-8 amino acids are preceded and followed by recombination signal sequences
 o Heavy chain variable encodes amino acids 1-99, J encodes additional 14-20 amino acids

• Light Chain Transcription
 o Germline DNA
 o VJ joined
 o Primary transcript mRNA
 o Splicing to make continuous mRNA w/ LVJC
 o Translated to polypeptide to make light chain and L spliced off

• Heavy chain transcription
 o Germline DNA recombined
 o DJ regions joined
 o V and DJ regions joined
 o Transcription to mRNA
 o Splicing to make continuous LVDJC
 o Translation

• Methods to generate diversity
 o Germline
 - Use of variable region genes
 - Several D's
 - Four to ten J's
 o Combinatorial
 - Joining of any variable region to any D to any J
 - Combination of any heavy chain variable region with any light chain variable region
 - $50V \times 30D \times 6JH = 9000$ heavy variable chains
 - $40V \times 5Jk = 200$ variable κ chains
 - $30V \times 10J\lambda = 300$ variable λ chains
 - $9000 \times (200+300) = 4.5$ million possible binding sites
 o Junctional diversity
 - Generated during V(D)J joining by variation in exact point of recombination
 - V-D, D-J in heavy chains
 - V-J in light chains
 - RAGs cut off recombination sequences and ligates them to release them
 - Exonuclease cuts off nucleotides and releases coding sequences to be ligated together
 - The exonuclease works anywhere
 - Same number of codons but a different sequence
 - Particularly prevalent in light chain variable region
 o N region addition
 - Addition of nucleotides by terminal deoxynucleotide transferase to V, D, or J ends
• Not encoded by a template
• Rare in light chains

• When in B cell differentiation do Ig gene rearrangements take place?
 o In pro B cells, D is rearranged to a heavy chain J segment on both chromosomes at random
 o Heavy chain V region is rearranged to DJ on one chromosome
 ▪ If out of frame/pseudogene, tries on other chromosome
 ▪ If it fails again, B cell stops development
 o If μ heavy chain is expressed, becomes a pre B cell and also attempts light chain V-J rearrangement
 ▪ Further VH-DJ joining shut off
 ▪ κ is favored 20:1 over λ
 ▪ Since there are four loci that could undergo VJ rearrangement, this step is usually successful
 ▪ There are also several VJ rearrangements possible w/in a single locus
 o If light chain is produced and IgM goes to cell surface, immature B cell
 ▪ If light chain is expressed, VL-JL joining shut off
 ▪ Feed-back regulation is basis of allelic exclusion
 ▪ Prevents expression of two heavy chains or two light chains

• How does B cell switch from membrane bound IgM to secreted form?
 o Alternative RNA splicing
 o Secreted μ has 20 aa sequence after C region
 o Membrane bound has 41 aa after C region
 ▪ This sequence has n-terminal negative AA, then 26 uncharged aa (α helix) then positive charges at the C-term
 ▪ This makes it stick in the membrane
 ▪ 2 Poly(A) sites
 □ Secreted transcription ends at first
 □ Transmembrane ends at second
 □ MC region in btwn the two
 ▪ After those two poly(A) sites, Cδ genes then another poly(A) region
 □ If transcription continues to this point, mainly IgD expressed
 □ Cμ genes get cut out