Processing and Presentation of Antigens for TCR Recognition and Myeloma Small Group

Thursday, February 14, 2008
11:00 AM

- MHC Class I Pathway
 - Characteristics
 - Peptides presented to CD8 T cells in complex w/ MHC I
 - Peptide fragments usually from intracellular source like viral proteins
 - Function is to alert CD8 T cells to an ongoing viral infection
 All nucleated cells can become infected w/ virus and therefore class I expressed on all nucleated cells
 - Structure of MHC I
 - Transmembrane heavy (α chain) non-covalently complexed by β2
 α chain has variable sequence; β2 is invariant
 α chain has 3 separate domains (1-3)
 - α1 and 2 domains are involved in peptide binding
 α3 and β2 domains are immunoglobulin like supports for α1/2
 - Peptide binding
 - Binding site are deep grooves on molecule surface
 - Non-covalent binding
 - Single peptide can bind many different peptides
 - Ends of peptide grasped by pockets at ends of groove
 - Constraint upon peptide length (8-10 residues)
 - Additional general sequence requirements may be filled, but peptide may still not bind
 - Processing and Presentation
 - Peptides generated from proteins in cytosol by proteasome
 - Peptides transported into ER lumen by TAP (selective for peptides able to bind to class I)
 - Bare lymphocyte syndrome results from TAP deficiency
 - Patients don't express TAP and little class I at surface
 - Highly susceptible to viral infections
 - Newly synthesized class I heavy chain and β2 microglobulin are translocated to ER
 - Calnexin assists in folding and prevents exit from ER
 - β2 interaction causes calnexin to dissociate and calreticulin associates
 - Tapasin positions class I to TAP
 - Peptide binding results in completion of folding, release from calreticulin, tapasin
 - Transport of vesicle containing peptide-class I complex to cell surface via golgi
 - Binding of peptide required for transport to cell surface
 - Viruses (HIV) have evolved mechanisms to interfere w/ processing/presentation
 - Processing and presentation occurs continuously in absence of infection
 - TCR Interaction
 - CD8 = cytotoxic T cells recognize class I-peptide complex
 - CD8 binds α3 domain of class I heavy chain
 - TCR binds to both peptide and parts of MHC molecule
 - Sits diagonally and symmetrically across the complex
 - CDRs 1 and 2 of Vα and Vβ contact helical regions of α1/2 of heavy chain
 - CRD3s of Vα/β contact peptide

- MHC Class II Pathway
 - Characteristics
 - Antigens derived from extracellular sources
 - Peptide-class II complexes recognized by CD4 T cells
 - Fxn of class II is to alert CD4 T cells to presence of extracellular infections
- Only expressed on professional antigen presenting cells (m'phages, B and dendritic cells)
 - Structure
 - Comprises of two non-covalently bound transmembrane chain (α and β)
 - Both chains have variable sequences
 - Two domains/chain
 - 1 domains similar and involved in peptide binding
 - 2 domains Ig-like support 1 domains
 - Peptide binding
 - Ends of peptide not grasped by pockets at end of groove
 - Peptides bound are longer and more variable (13-25 residues)
 - Processing and Presentation
 - Antigen uptake via endo/phagocytosis
 - Vesicle becomes fused w/ lysosome
 - Phagolysosome breaks down protein into framents
 - Vesicles containing class II bud-off golgi and fuse w/ phagolysosome
 - Newly synthesized class II α and β chains assemble in ER and bind to invariant chain
 - Invariant chain blocks peptide binding to class II in ER and aids in transport to vesicles
 - In early vesicle, proteases (cathepsin L) break invariant chain --> CLIP
 - HLA-DM removes CLIP
 - Peptides associate w/ class II vesicles
 - Translocation to cell surface
 - TCR Interaction
 - TCR binds to both peptide and parts of class II
 - Does not interact symetrically
 - CDRs 1 and 2 of Vα make stronger contact than those of Vβ
- Bacterial Superantigen
 - Toxins that bind to MHC and TCR fundamentally different way
 - Does not require processing
 - Involves distinct binding sites on MHC and TCR molecules
 - Mimic signal delivered by MHC peptide
 - Large number of T cells activated by superantigens --> massive T cell cytokine secretion --> shock
- Induction of MHC
 - Expression increased by inflammatory cytokines, esp interferons
 - Increased expression results in increased immune system activation directed toward elimination of infectious agent
- Myeloma Small Group
 - Use ELISA testing w/ IgG1-4 antibodies to verify monoclonality; can sequence to get exact clone
 - Sequencing
 - Bence-Jones (light chains in urine) will be all one light chain
 - Serum will show a dominance of one light chain but not clear sequence
 - Normal individual will not show any particular sequence
 - Bone deformities
 - Plasma cells accumulate in bone marrow --> physical mass
 - Plasma cells also release enzymes that break down bone
 - Bone marrow biopsy shows lots of plasma cells
 - Anemia due to competition from plasma cells --> don't produce enough RBCs