Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
M2 Endocrine Sequence

University of Michigan Medical School

Directors:
Arno K. Kumagai, M.D.
Thomas Giordano, M.D., Ph.D.

Winter 2009
General Information

- Syllabus and Lecture notes
- Required Sessions:
 - Patient presentation: Friday, March 6th
 - Endocrine Small Groups: Thurs-Fri, March 5-6th
 - Longitudinal Case
- Endocrine Photo Gallery
Feedback loops and anterior pituitary physiology

M2- Endocrine Sequence

Arno K. Kumagai, M.D.

Division of Metabolism, Endocrinology & Diabetes

Winter 2009
Pituitary cell types

<table>
<thead>
<tr>
<th>Pituitary cell type</th>
<th>Pituitary hormone</th>
<th>Clinical syndrome associated w/ tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticotrope</td>
<td>ACTH</td>
<td>Cushing’s disease</td>
</tr>
<tr>
<td>Somatotrope</td>
<td>GH</td>
<td>Acromegaly</td>
</tr>
<tr>
<td>Gonadotrope</td>
<td>FSH and LH</td>
<td>None</td>
</tr>
<tr>
<td>Lactotrope</td>
<td>Prl</td>
<td>Prolactinoma</td>
</tr>
<tr>
<td>Thyrotope</td>
<td>TSH</td>
<td>Hyperthyroidism</td>
</tr>
</tbody>
</table>

Source: Undetermined
Hormonal Feedback Loops
You

Your thermostat

Your furnace

Source Undetermined
Hypothalamus

Pituitary

End organ

R. Lash
Adrenal axis

CRH ± AVP

ACTH

Cortisol
CRH = Corticotropin Releasing Hormone

- 41 amino acids long
- Ovine form is more potent than human form
- A trophic factor and a releasing hormone
Hypothalamic-Pituitary-Adrenal Axis

ACTH = Corticotropin
- Derived from a large molecule (POMC)
- 39 amino acids long, first 24 are the same in multiple species
 - Synthetic ACTH (aa 1-24) used clinically
- 250 µg in the pituitary - about 50 µg secreted daily
Post-translational Processing of POMC in the Normal Pituitary

POMC = Pro-opiomelanocortin

MSH = Melanocyte stimulating hormone
Growth hormone axis

GHRH → GH (-) → IGF-I (-)

GH (+)

SRIF (-)
Growth hormone axis

GH Releasing Hormone (GHRH)

- About 44 amino acids long
- Discovered in pancreatic tumors
- Men over 40 have little response to GHRH
Growth hormone axis

Somatostatin (SRIF)
- Inhibits secretion of GH and TSH
- Also inhibits GI hormones and functions
- Octreotide is a clinically useful analogue

GHRH → GH(-) → SRIF → IGF-I

GFH
(+)
(-)
(-)
(+)

GHRH

GH
(+)
(-)

IGF-I
(-)

R. Lash
Growth hormone - prolactin family

- Significant homology, less so at the protein level (16%)
- Prl & GH both activate the prolactin receptor
- Family also includes placental lactogen (PL)
Prolactin axis

Neural Stimulus (+)

'PRF' (+)

Prl (-)

Dopamine

IMPORTANT

Prolactin release is tonically inhibited by DOPAMINE

Janine Chedid, Wikimedia Commons
Regulation of prolactin = tonically inhibited

- **Prolactin-inhibiting factors (PIFs)**
 - **Dopamine**, Dopamine, Dopamine, maybe GABA
 - **Bromocriptine** is a dopamine agonist
 - Block multiple aspects of lactotrope function

- **Prolactin-releasing factors (PRFs)**
 - TRH - but probably not physiologically important
 - Other candidates: AVP, VIP, Oxytocin, PHI-27
Thyroid axis

TRH

(+)

(-)

SRIF

(+)

(-)

TSH

(+)

(-)

T₃/T₄

(-)

R. Lash
Thyroid axis

\[T_4 \leftrightarrow T_3 \]

- TRH
- TSH
- SRIF

(+) and (-) signs indicate regulatory effects.

R. Lash
Hypothalamic-Pituitary-Thyroid Axis

TRH = Thyrotropin Releasing Hormone
- Tripeptide (3 amino acids)
- Also a potent stimulator of prolactin release
- Synthesized as a prohormone with six copies of the TRH molecule

TRH

TSH

T4 ⇌ T3

(-)

SRIF

T3/T4

(+)

(-)

R. Lash
The TRH Tripeptide

Source Undetermined
Hypothalamic-Pituitary-Thyroid Axis

TRH → (+) T4 ↔ T3 → SRIF → (-) T3/T4 → (+) TSH

TSH = Thyroid Stimulating Hormone

• AKA “Thyrotropin”
• Binds to receptors on thyroid to stimulate synthesis and release of thyroid hormones T4 (and some T3).
• Part of a glycoprotein hormone family
Thyroid stimulating hormone (TSH) is part of a family of glycoprotein hormones

- Composed of noncovalently bound α and β subunits
- Both subunits are glycosylated
- α subunit is common
- β subunits are unique - confer biologic and immunologic specificity
Glycoprotein hormone family

α-subunit

92 aa

TSH-β

FSH-β

LH-β

CG-β

112-147 aa
Hypothalamic-Pituitary-Gonadal Axis

GnRH

(+)

Testo (LH)

(-)

(-)

Inhibin (FSH)

(+)

LH & FSH

(+)

R. Lash
Hypothalamic-Pituitary-Gonadal Axis

- GnRH
- LH & FSH
- Testo (LH)
- Inhibin (FSH)
- T → E2

Note: (+) indicates stimulation; (-) indicates inhibition.
GnRH = Gonadotropin Releasing Hormone

- 10 amino acids in length
- Regulates both LH and FSH
- GnRH ↔ LH & FSH
- Sex steroids
Gonadotropin releasing hormone (GnRH)

- Pulsatility and pulse frequency are critical
- Pulsatile infusion stimulates LH and FSH secretion
- Constant infusion inhibits LH and FSH secretion
- GnRH can be used to induce fertility and suppress gonadal function
Hypothalamic-Pituitary-Gonadal Axis

This is where things get complicated...

GnRH

LH & FSH

Estrogen

Inhibin (FSH)

R. Lash
You

Your stereo

Your roommate
Positive feedback loop

You

That special someone

R. Lash
You

That special someone

Special someone’s significant other

(?)

(?)

R. Lash
Female gonadal axis (negative feedback)

GnRH

LH & FSH

(+)

Estrogen (±)

Inhibin (FSH)

(−)

R. Lash
Female gonadal axis
(Positive feedback during ovulation)

GnRH

(+)

LH & FSH

Estrogen
(+)

R. Lash
Let’s review the major players

<table>
<thead>
<tr>
<th>Hypothalamic releasing factor</th>
<th>Pituitary hormone</th>
<th>Effect of hypothalamic factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRH</td>
<td>TSH (and Prl)</td>
<td>Stimulatory</td>
</tr>
<tr>
<td>CRH</td>
<td>ACTH</td>
<td>Stimulatory</td>
</tr>
<tr>
<td>GHRH</td>
<td>GH</td>
<td>Stimulatory</td>
</tr>
<tr>
<td>Somatostatin (SRIF)</td>
<td>GH and TSH</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>Dopamine</td>
<td>Prl</td>
<td>Inhibitory</td>
</tr>
<tr>
<td>GnRH</td>
<td>FSH and LH</td>
<td>Stimulatory</td>
</tr>
</tbody>
</table>

Source: Undetermined
Rhythms in endocrinology

■ Circadian rhythms
 - Occur over the course of a day, and repeat daily
 - Characteristic of most endocrine functions
 - Examples: Cortisol secretion

■ Ultradian rhythms
 - Bursts (spikes) of hormone secretion
 - Can be superimposed on circadian rhythms
 - Physiologically important, particularly in reproduction
Pulsatility in the reproductive axis

- **GnRH**
 - Pulsatile infusion at 90 minute intervals can induce ovulation in women with hypothalamic disease
 - Continuous infusion is used to suppress LH/FSH in preparation for in vitro fertilization

- **LH and FSH**
 - Puberty is associated with pulses of greater frequency and amplitude
Frequency of administration determines effect of PTH on bone cells

Osteoblast

Osteoclast

P<0.05, †P<0.01, ‡P<0.001 vs Vehicle

Dobnig and Turner. Endocrinology 1997;138:4607-4612
Things to remember if you’re just waking up

- Generally, hypothalamic hormones stimulate pituitary hormone release
- Prolactin regulation, in contrast, is primarily inhibitory
- The inhibitory hypothalamic factors worth remembering are somatostatin and dopamine
Things to remember if you’re just waking up

- Pituitary hormones fall into three groups
 - Glycoprotein hormones (TSH, LH, and FSH)
 - ACTH
 - Growth hormone and prolactin

- Negative feedback is the usual state of affairs, but not the only one

- Hormone activity depends on both the quantity present, and its mode of release
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 6: Source Undetermined
Slide 7: Source Undetermined
Slide 8: Source Undetermined
Slide 10: Robert Lash
Slide 11: Robert Lash
Slide 12: Robert Lash
Slide 13: Robert Lash
Slide 14: Robert Lash
Slide 15: Source Undetermined
Slide 16: Robert Lash
Slide 17: Robert Lash
Slide 18: Robert Lash
Slide 22: Robert Lash
Slide 23: Robert Lash
Slide 24: Robert Lash
Slide 25: Source Undetermined
Slide 26: Robert Lash
Slide 28: Robert Lash
Slide 29: Robert Lash
Slide 30: Robert Lash
Slide 31: Robert Lash
Slide 33: Robert Lash
Slide 34: Robert Lash
Slide 35: Robert Lash
Slide 36: Robert Lash
Slide 37: Robert Lash
Slide 38: Robert Lash
Slide 39: Source Undetermined
Slide 42: Dobnig and Turner. Endocrinology 1997;138:4607-4612