open.michigan

Author(s): Arno Kumagai, M.D., Robert Lash, M.D., 2009

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution–Noncommercial–Share Alike 3.0 License:** http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt				
{ Content th	e copyright holder, author, or law permits you to use, share and adapt. }			
Ø PD-GOV	Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)			
Ø PD-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.			
Ø PD-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.			
(cc) ZERO	Creative Commons – Zero Waiver			
(©)mr	Creative Commons – Attribution License			
(C) BY-SA	Creative Commons – Attribution Share Alike License			
(©) 87-MC	Creative Commons – Attribution Noncommercial License			
C) BY-NC-SA	Creative Commons – Attribution Noncommercial Share Alike License			
G GNU-FDL	GNU – Free Documentation License			

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

M2 Endocrine Sequence

University of Michigan Medical School

Directors: Arno K. Kumagai, M.D. Thomas Giordano, M.D., Ph.D.

Winter 2009

General Information

- Syllabus and Lecture notes
- · Required Sessions:
 - Patient presentation: Friday, March 6th
 - Endocrine Small Groups: Thurs-Fri, March 5-6th
 - Longitudinal Case
- Endocrine Photo Gallery

Feedback loops and anterior pituitary physiology

M2- Endocrine Sequence Arno K. Kumagai, M.D. Division of Metabolism, Endocrinology & Diabetes

Winter 2009

Pituitary cell types

Pituitary cell type	Pituitary hormone	Clinical syndrome associated w/ tumor
Corticotrope	ACTH	Cushing's disease
Somatotrope	GH	Acromegaly
Gonadotrope	FSH and LH	None
Lactotrope	Prl	Prolactinoma
Thyrotrope	TSH	Hyperthyroidism
PD-INEL Source Undetermined		

Hormonal Feedback Loops

(C) EXAMPLES AND R. Lash

Hypothalamus

Pituitary

End organ

(O) DENGESATI R. Lash

(G) ENGINE R. Lash

Hypothalamic-Pituitary-Adrenal Axis

CRH = Corticotropin **Releasing Hormone** \cdot 41 amino acids long Ovine form is more potent than human form · A trophic factor

and a releasing

hormone

Hypothalamic-Pituitary-Adrenal Axis

ACTH = Corticotropin

- Derived from a large molecule (POMC)
- 39 amino acids long, first 24 are the same in multiple species
 - Synthetic ACTH (aa 1-24) used clinically

250 μg in the pituitary
 about 50 μg
 secreted daily

Post-translational Processing of POMC in the Normal Pituitary POMC = Pro-opiomelanocortin

MSH = Melanocyte stimulating hormone

COLUMNESAL R. Lash

Growth hormone axis

Growth hormone axis

(CO) EXENCES AND R. Lash

Growth hormone - prolactin family

- Significant homology, less so at the protein level (16%)
- Prl & GH both activate the prolactin receptor
- Family also includes placental lactogen (PL)

Janine Chedid, Wikimedia Commons

Regulation of prolactin = tonically inhibited

Prolactin-inhibiting factors (PIFs)

- Dopamine, Dopamine, Dopamine, maybe GABA
- Bromocriptine is a dopamine agonist
- Block multiple aspects of lactotrope function

Prolactin-releasing factors (PRFs)

- TRH but probably not physiologically important
- Other candidates: AVP, VIP, Oxytocin, PHI-27

(O) DENKESAN R. Lash

Hypothalamic-Pituitary-Thyroid Axis

TRH = Thyrotropin **Releasing Hormone** Tripeptide (3 amino acids) Also a potent stimulator of prolactin release Synthesized as a

prohormone with six copies of the TRH molecule

The TRH Tripeptide

Source Undetermined

Hypothalamic-Pituitary-Thyroid Axis

TSH = Thyroid Stimulating Hormone AKA "Thyrotropin" Binds to receptors on thyroid to stimulate synthesis and release of thyroid hormones T4 (and some T3).

 Part of a glycoprotein hormone family Thyroid stimulating hormone (TSH) is part of a family of glycoprotein hormones

- Composed of noncovalently bound α and β subunits
- Both subunits are glycosylated
- α subunit is common
- β subunits are unique confer biologic and immunologic specificity

Glycoprotein hormone family

(C) EXENCISATE R. Lash

(C) INTENCESAN R. Lash

Hypothalamic-Pituitary-Gonadal Axis

- GnRH = Gonadotropin
 Releasing Hormone
- 10 amino acids in length
- GnRH ➡ LH & FSH
 ➡ Sex steroids
 - Regulates <u>both</u> LH and FSH

Gonadotropin releasing hormone (GnRH)

- Pulsatility and pulse frequency are critical
- Pulsatile infusion stimulates LH and FSH secretion
- Constant infusion inhibits LH and FSH secretion
- GnRH can be used to induce fertility and suppress gonadal function

(O) DENKESAN R. Lash

Positive feedback loop

You

That special someone

(CO) EXENCISATE R. Lash

(C) EXENCISATE R. Lash

(G) ENGLISHING R. Lash

Let's review the major players

Hypothalamic releasing factor	Pituitary hormone	Effect of hypothalamic factor
TRH	TSH (and PrI)	Stimulatory
CRH	ACTH	Stimulatory
GHRH	GH	Stimulatory
Somatostatin (SRIF)	GH and TSH	Inhibitory
Dopamine	Prl	Inhibitory
GNRH	FSH and LH	Stimulatory

Rhythms in endocrinology

Circadian rhythms

- Occur over the course of a day, and repeat daily
- Characteristic of most endocrine functions
- Examples: Cortisol secretion

Ultradian rhythms

- Bursts (spikes) of hormone secretion
- Can be superimposed on circadian rhythms
- Physiologically important, particularly in reproduction

Pulsatility in the reproductive axis

GnRH

- Pulsatile infusion at 90 minute intervals can induce ovulation in women with hypothalamic disease
- Continuous infusion is used to suppress LH/FSH in preparation for in vitro fertilization

LH and FSH

• Puberty is associated with pulses of greater frequency and amplitude

Frequency of administration determines effect of PTH on bone cells

Things to remember if you' re just waking up

- Generally, hypothalamic hormones stimulate pituitary hormone release
- Prolactin regulation, in contrast, is primarily inhibitory
- The inhibitory hypothalamic factors worth remembering are somatostatin and dopamine

Things to remember if you' re just waking up

Pituitary hormones fall into three groups

- Glycoprotein hormones (TSH, LH, and FSH)
- ACTH
- Growth hormone and prolactin

Negative feedback is the usual state of affairs, but not the only one

Hormone activity depends on both the quantity present, and its mode of release

Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 6: Source Undetermined
Slide 7: Source Undetermined
Slide 8: Source Undetermined
Slide 10: Robert Lash
Slide 11: Robert Lash
Slide 12: Robert Lash
Slide 13: Robert Lash
Slide 14: Robert Lash
Slide 15: Source Undetermined
Slide 16: Robert Lash
Slide 17: Robert Lash
Slide 18: Robert Lash
Slide 20: Robert Lash; GFDL, Janine Chedid, Wikimedia Commons, http://en.wikipedia.org/wiki/GNU_Free_Documentation_License
Slide 22: Robert Lash
Slide 23: Robert Lash
Slide 24: Robert Lash
Slide 25: Source Undetermined
Slide 26: Robert Lash
Slide 28: Robert Lash
Slide 29: Robert Lash
Slide 30: Robert Lash
Slide 31: Robert Lash
Slide 33: Robert Lash
Slide 34: Robert Lash
Slide 35: Robert Lash
Slide 36: Robert Lash
Slide 37: Robert Lash
Slide 38: Robert Lash
Slide 39: Source Undetermined
Slide 42: Dobnig and Turner. Endocrinology 1997;138:4607-4612