Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Islet Cell Hormones

And

Hormonal Regulation of Fuel Metabolism

M2-Endocrine Sequence
Arno K. Kumagai, M.D
Dept. of Internal Medicine

Winter 2009
Normal Physiology

ISLET CELL HORMONES

Alpha Cells: GLUCAGON

Beta Cells: INSULIN (AND AMYLIN)
Normal Physiology

ISLET CELL HORMONES

Alpha Cells: GLUCAGON

Beta Cells: INSULIN
(AND AMYLIN)
Islet hormone secretion varies with circulating glucose levels.

Meal increases:

Glucose
- increased **insulin**
- decreased **glucagon**

Amino acids, FA
- increased **insulin**
Normal Insulin Physiology

STIMULI FOR INSULIN SECRETION:

GLUCOSE
Amino Acids
Fatty Acids

INSULIN
Insulin Action
Insulin Actions

Insulin stores stuff...
Insulin Action

- **SKELETAL MUSCLE**
 - Increases glucose transport
 - Increases glycogen synthesis
 - Inhibits gluconeogenesis

- **FAT**
 - Increases glucose transport
 - Increases lipogenesis
 - Inhibits lipolysis

- **LIVER**
 - Increases glycogen synthesis
 - Increases glycolysis
 - Inhibits gluconeogenesis

- **INSULIN**
 - Increases glucose transport
 - Increases lipogenesis
 - Inhibits lipolysis

A. Kumagai
Normal Glucose Metabolism

GLUCOSE SUPPLY

- DIET (Coke)

BLOOD GLUCOSE

70-120 mg/dL

GLUCOSE DEMAND

- BRAIN
- Insulin-independent tissues
- MUSCLE
- Insulin-dependent tissues

- Hepatic glucose production

- Insulin (-)
- Insulin (+)

A. Kumagai
Normal Glucose Metabolism: The Fasting State or “Feeding the Head”

GLUCOSE SUPPLY

GLUCOSE DEMAND

BLOOD GLUCOSE
70-120 mg/dL

DIET

BRAIN
Insulin-independent tissues

Liver
Hepatic glucose production

(-) INSULIN

INSULIN

MUSCLE
Insulin-dependent tissues

FAT CELL

A. Kumagai
The adult brain is completely dependent on glucose for normal metabolism until >5 days into a fast.
Normal Glucose Metabolism: The Fed State

GLUCOSE SUPPLY
- **DIET**
 - COKE
 - Liver
 - Hepatic glucose production

BLOOD GLUCOSE
- 70-120 mg/dL

GLUCOSE DEMAND
- **BRAIN**
- Insulin-independent tissues
- **MUSCLE**
- **FAT CELL**

INSULIN
- (-)
- (+)
INSULIN-GLUCAGON RELATIONSHIPS

STORAGE

INSULIN

Glycogenesis and decreased blood glucose

MOBILIZATION

GLUCAGON

Glucoenogenesis and increased blood glucose
Insulin Action

Liver
- Increases glycogen synthesis
- Increases glycolysis
- Inhibits gluconeogenesis

FAT
- Increases glucose transport
- Increases lipogenesis
- Inhibits lipolysis

SKELETAL MUSCLE
- Increases glucose transport
- Increases glycogen synthesis
- Inhibits gluconeogenesis
Insulin-regulated steps in muscle carbohydrate metabolism

- **I → = insulin-sensitive**
- **Facilitated glucose transport**
 - GLUT4

- **Glycogen synthase**
 - Inactive
 - Active

- **Glucose-FA cycle**
- **PFK**
- **Glycogen**
 - (Citrate inhib PKF → accum hexose P → reduce conc gradient for glucose entry)

- **Amino acids → AA → Protein**
- **(-)**

Source: Undetermined
Insulin Action

- Increases glycogen synthesis
- Increases glycolysis
- Inhibits gluconeogenesis

Liver

Fat
- Increases glucose transport
- Increases lipogenesis
- Inhibits lipolysis

Skeletal Muscle
- Increases glucose transport
- Increases glycogen synthesis
- Inhibits gluconeogenesis

Pancreas
Carbohydrate Metabolism in Hepatocytes

Insulin inhibits glucose production

Insulin stimulates glycogen storage

Insulin inhibits glycogen breakdown
Insulin Action

- Increases glycogen synthesis
- Increases glycolysis
- Inhibits gluconeogenesis

Liver

- Increases glucose transport
- Increases lipogenesis
- Inhibits lipolysis

FAT

- Increases glucose transport
- Increases glycogen synthesis
- Inhibits gluconeogenesis

SKELETAL MUSCLE

- Increases glucose transport
- Increases glycogen synthesis
- Inhibits gluconeogenesis
Insulin-regulated carbohydrate metabolism: adipocyte

Insulin inhibits lipolysis by stimulating lipoprotein lipase (LPL) and inhibiting hormone-sensitive lipase (HSL)

Facilitated glucose transport

GLUT4

† Lipogenesis

↓ Lipolysis

(+) LPL

(-) HSL

Source Undetermined
Fuel Metabolism: Take-Home Points

Understand:

1. That insulin binding to its receptor initiates a cascade of signaling pathways that results in translocation of the insulin-sensitive GLUT4 to the plasma membrane and increased glucose uptake.

2. The changes in insulin secretion in fasting and fed states and the physiologic “rationale” for preserving brain glucose uptake.
Fuel Metabolism: Take-Home Points

Understand:

3. The actions of insulin on skeletal muscle, liver, and fat.

4. The biochemistry: understand that insulin stores (e.g., stimulates glycogen synthase and lipoprotein lipase) and inhibits catabolism (e.g., inhibits HSL).
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 4: Arno Kumagai
Slide 5: Dr. Thomas Caceci, Image found at http://education.vetmed.vt.edu/curriculum/vm8054/labs/labtoc.htm
Slide 6: Source Undetermined
Slide 7: Arno Kumagai
Slide 8: www.hannal.co.kr
Slide 10: Arno Kumagai
Slide 11: Arno Kumagai
Slide 12: Arno Kumagai
Slide 13: Arno Kumagai; Source Undetermined
Slide 14: Arno Kumagai
Slide 15: Arno Kumagai
Slide 16: Arno Kumagai
Slide 17: Source Undetermined
Slide 18: Arno Kumagai
Slide 19: Source Undetermined
Slide 20: Arno Kumagai
Slide 21: Source Undetermined