Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ*

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
DIABETES MELLITUS

Part 3:
MANAGEMENT

M2 - Endocrine Sequence
A. Kumagai
Diabetes Mellitus: Chronic Complications

“Too much sugar is bad for you.”

-- My mother
Normalization of blood glucose levels in individuals with diabetes will prevent or delay chronic complications.
THE DIABETES CONTROL AND COMPLICATIONS TRIAL (DCCT), 1993

1400 INDIVIDUALS WITH IDDM

CONVENTIONAL INSULIN THERAPY
- CONTROL OF Sx’s.

INTENSIVE INSULIN THERAPY
- NORMALIZE BLOOD SUGAR

Does long-term normalization of blood glucose levels in type 1 diabetes reduce the risk of development or progression of microvascular complications?
The Benefits of “Tight Control”: The DCCT

DCCT RESULTS: The Good News

Intensive metabolic control dramatically reduced the risk of developing or worsening microvascular complications in type 1 diabetes.

A more recent trial, the United Kingdom Prospective Diabetes Study (UKPDS), demonstrated very similar results in individuals with type 2 diabetes.

DCCT, 1993
Message from the DCCT and UKPDS:

“Metabolic control matters.”
Management of Diabetes Mellitus: Goals of Therapy

MANAGEMENT MUST BE INDIVIDUALIZED!

- Normal fasting blood glucose levels.
- Prevention of postprandial hyperglycemia.
- Reduction of hypoglycemic episodes to a bare minimum.
- Psychosocial: Helping the patient to live a productive, enjoyable life with diabetes and NOT ruled by diabetes.
Management of Diabetes Mellitus: Components of Therapy

- Diet
- Exercise
- Insulin or Oral Agents
- Reduction of Other Risk Factors

Management of Diabetes
The Diabetes Care Team

- Diabetes Educator
- Specialized Nutritionist
- Primary Care and Subspecialist Physicians
- Psychologist, Social Worker, Psychiatrist

Patient
Diabetes Care From the Patient’s Perspective

To deliver effective diabetes care, perspective is EVERYTHING

• Goals and ambitions
• Lifestyle and personal preferences
• Concerns and fears

Since over 95% of diabetes care is SELF CARE, one must understand “where the patient is coming from” to deliver meaningful advice and care.
“Diabetes Care is Self Care”

The concept of “patient compliance” is neither appropriate nor effective in diabetes care.

The “doctor-knows-best” approach is replaced by shared responsibilities and alliances between the physician and the patient in diabetes care.
The Role of the Diabetes Care Provider

“Knowledge speaks but wisdom listens.”

-- Jimi Hendrix
Management of Diabetes Mellitus

INSULIN THERAPY
1870 Siege of Paris:
- Apollinaire Bouchardat notices that famine actually improves control in his diabetic patients.
- “Mangez le moins possible.” (“Eat the least possible.”)

1914-17 New York:
“Under-nutrition Therapy”
- Frederick Allen imposes severe caloric restriction (<500 Cal/d) on Diabetic Ward, alternating with periods of total fasting.
- Most died of starvation, but were spared death from ketoacidosis.
The Advent of Insulin

January 11, 1922 University of Toronto

• Frederick Banting and his graduate student, Charles Best, administer a crude preparation of insulin to Leonard Thompson, a 14-year-old boy with type 1 diabetes.
• The results were modest, with side effects (sterile abscesses). Banting & Best go back to the drawing board....

January 23, 1922: Repeat attempt with new preparation from J.B. Collip’s laboratory. This time, preparation results in significant decreases in blood sugars and minimal side effects. Leonard Thompson begins life-long insulin therapy.

1923: Banting & McCleod share Nobel Prize in Medicine

Dr. Frederick Allen closes his clinic and declares bankruptcy.

(image) Schade et al, 1983
With the advent of insulin therapy, the challenge in diabetes care shifted from mere survival to avoiding chronic complications.
Insulin

51 amino acids, MW 6,000 Daltons
Secreted as a prohormone consisting of an A-chain, a B-chain and a connecting, or C-peptide.

Pickup & Williams, 1991
The Dream of Intensive Insulin Therapy

The "Closed Loop"

GLUCOSE SENSING

INSULIN DELIVERY
Insulin Therapy

GOAL

To most closely match insulin delivery with insulin needs
Insulin absorption and entry into the systemic circulation depends chiefly on its dissociation from hexamers and crystals, which in turn depends on tissue pH. Blood flow plays only a minor role.
Insulin Preparations

Monomeric insulin (Lispro and Insulin Aspart)

Regular insulin

NPH & Lente

Gliargine

Ultralente

Plasma insulin

Pickup & Williams, 1991
Rapid-Acting Insulins: Lispro (Humalog) and Insulin Aspart (Novalog)

A-CHAIN

B-CHAIN

A. Kumagai

= Insulin Aspart (NovoLog, 28^B Asp)
= Lispro (Humalog, 28^B Lys29^B Pro)
Rapid-Acting Insulins: Regular vs. Lispro (or Aspart)

<table>
<thead>
<tr>
<th>Insulin</th>
<th>Onset</th>
<th>Peak</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>20-30’</td>
<td>1.5-2.0hrs</td>
<td>~5.6hrs</td>
</tr>
<tr>
<td>Lispro</td>
<td>5-6</td>
<td>40-60’</td>
<td>~3hrs</td>
</tr>
</tbody>
</table>

Holleman & Hoekstra, 1997
Insulin Glargine (Lantus)

- Substitution of amino acids alters isoelectric point and decreases solubility at physiologic pH.
- Very long-acting, “peakless” insulin.
- Often taken once a day at bedtime.
- Because of acidic buffer, cannot be mixed with other types of insulin in same syringe.
Insulin Regimens

CONVENTIONAL THERAPY = NPH ± Regular once-twice daily

INTENSIVE THERAPY = Rapid with each meal and Long AM and/or at bedtime.
Multiple-Daily Insulin Regimens

General Principle:

Normal insulin secretion from the pancreas is split into approximately 50% continuous basal infusion and 50% meal-associated boluses.
Multiple-Daily Insulin Regimens

FLEXIBILITY is derived from a sliding scale of the rapid-acting insulin, e.g.,

The rapid-acting insulin may be dosed according to amount of carbohydrates (e.g., 1 unit per 15 g CHO) and the pre-meal blood sugar (e.g., 1 unit per 50 > 100 mg/dL).
Continuous Subcutaneous Insulin Infusion Therapy (CSII)

Insulin Pumps

Insulin Pump by David-I98, Wikipedia

Insulin Pump With Infusion by mbbradford, Wikipedia
The cornerstone of insulin therapy is SELF MONITORING OF BLOOD GLUCOSE LEVELS.
Continuous Glucose Monitoring
Continuous Glucose Monitoring System (CGMS) Medtronic MiniMed

Representative CGMS profile in 35 y/o woman with type 1 diabetes and HbA1c of 7.1%.

Bode and Hirsch Diab Tech Therapeutics 2 (Suppl 1), 2000
Insulin Therapy and Exercise

Physical activity increases glucose transport independent of insulin and decreases insulin requirements. Adjustments of insulin dosages must be made when anticipating periods of increased physical activity.
Insulin Preparations

- Monomeric insulin (Lispro and Insulin Aspart)
- Regular insulin
- NPH & Lente
- Glargine
- Ultralente

Pickup & Williams, 1991
Insulin Preparations

<table>
<thead>
<tr>
<th>Type</th>
<th>Onset</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lispro (Humalog)</td>
<td>5-10 min.</td>
<td>~3 hrs</td>
</tr>
<tr>
<td>Aspart (Novalog)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glulisine (Apidra)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regular</td>
<td>20-30 min.</td>
<td>4-6 hrs</td>
</tr>
<tr>
<td>INTERMEDIATE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPH</td>
<td>1-2 hrs.</td>
<td>12-18 hrs</td>
</tr>
<tr>
<td>LONG-ACTING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glargine (Lantus)</td>
<td>4-6 hrs.</td>
<td>>24 hr</td>
</tr>
<tr>
<td>Detemir (Levemir)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓ = be familiar with these
Insulin Therapy

Side Effects
Iatrogenic hypoglycemia is the limiting factor in the treatment of insulin-dependent diabetes mellitus.
DEFENSE AGAINST HYPOGLYCEMIA: The Counterregulatory Response

DEFENSE AGAINST HYPOGLYCEMIA:
The Counterregulatory Response

In normal physiology, GLUCAGON secretion is the main defense against hypoglycemia.

DEFENSE AGAINST HYPOGLYCEMIA: The Counterregulatory Response

- Type 1 DM
- ↓ GLUCOSE
- ↓ INSULIN
- ↑ GLUCAGON
- EPINEPHRINE
 - NOREPINEPHRINE
- GROWTH HORMONE
- CORTISOL
- ↑ GLUCOSE

Symptoms of Hypoglycemia

“Autonomic”
- Tremulousness
- Palpitations
- Sweating
- Anxiety
- Warmth
- Feelings of “Impending Doom”

Neuroglycopenic
- Impaired concentration
- Fatigue
- Headache, dizziness
- Slurred speech
- Confusion
- Disorientation
- Coma
- Seizures

Warning symptoms of hypoglycemia
The Slippery Slope of Hypoglycemia

BLOOD GLUCOSE (mg/dL)

- "20"
- "50"
- "70"

Autonomic Warning Symptoms

Time →
The Slippery Slope of Hypoglycemia

BLOOD GLUCOSE (mg/dL)

Time

Autonomic Warning Symptoms

Neuroglycopenic Symptoms

“70”

“50”

“20”
The Slippery Slope of Hypoglycemia

BLOOD GLUCOSE (mg/dL)

Autonomic Warning Symptoms

Neuroglycopenic Symptoms

Seizures, Coma

Time

“70”

“50”

“20”
The Slippery Slope of Hypoglycemia

Blood Glucose (mg/dL)

- "70"
- "50"
- "20"

Time

Autonomic Warning Symptoms

Neuroglycopenic Symptoms

Seizures, Coma

A. Kumagai
The Slippery Slope of Hypoglycemia

Blood Glucose (mg/dL)

- "70"
- "50"
- "20"

FREQUENT HYPOGLYCEMIA

Neuroglycopenic Symptoms

Seizures, Coma

Autonomic Warning Symptoms
The onset of neuroglycopenia in the absence of prior autonomic warning symptoms
HYPOGLYCEMIA

Hypoglycemic episodes may be terrifying for the individual with diabetes and for his/her family and friends and may contribute to a sense of total loss of control over one’s health and one’s life.
Hypoglycemia Treatment

If conscious and can swallow safely,

- Oral carbohydrate replacement: glucose tablets

If unconscious or delerious:

- In the hospital:
 - 50% dextrose IV push

- At home:
HYPOGLYCEMIA: Treatment

Medical Alert Bracelet
HYPOGLYCEMIA: Prevention

- Communication
- Matching Insulin Demands with Insulin Needs
- Supportive Environment
- Physiological Replacement of Insulin

Prevention of Hypoglycemia
Living with Diabetes

COMPLICATIONS

HYPOGLYCEMIA
The Role of the Diabetes Care Provider

You gotta help ‘em keep their “mojo workin’”

-- Muddy Waters
Insulin Therapy: Complications

WEIGHT GAIN: Causes

• Overeating in anticipation of possible hypoglycemia.
• Overeating in response to hypoglycemia.
• Minor effect: decreased caloric loss from resolution of glucosuria.

—Vicious cycle— of insulin leading to increased appetite, weight gain, increased insulin resistance, increased insulin, increased appetite, further weight gain, etc.
Management of Diabetes Mellitus

Oral Agents
Management of Diabetes Mellitus

Type 1 Diabetes → Insulin

Type 2 Diabetes → Oral Agents
Management of Type 2 Diabetes Mellitus

- Abnormally high hepatic glucose output
- Peripheral insulin resistance
- Abnormal pancreatic insulin secretion

Liver → Blood Glucose → Insulin → Muscle

Pancreas → Insulin

FAT CELL
Oral Agents: The Sulfonylureas or “A Long History of Flogging the Pancreas”

- **ACTION:** Stimulates insulin secretion by inhibiting β cell potassium channels.
- **EFFECTIVENESS:** Decreases blood glucose by average of ~60 mg/dL.
- **SIDE EFFECTS:** Hypoglycemia, particularly in patients with impaired renal function (e.g., diabetic nephropathy).
Oral Agents: Metformin (Glucophage)

- **ACTION:** Inhibits excessive hepatic glucose output (**MAJOR**) and increases tissue sensitivity to insulin (**minor**).

- **SIDE EFFECTS:**
 -- **GI Distress:** Slowly increasing dose helps.
 -- **Lactic acidosis:** esp. in renal impairment or volume depletion. High mortality.
 -- **Appetite suppression**
Oral Agents: Thiazolidinediones
“The Glitazones”

“GLITAZONES”
Rosiglitazone
Pioglitazone

• ACTION: “Insulin sensitizers:” increase tissue sensitivity to insulin.

• EFFECTIVENESS: Slightly more potent than metformin. May be used in combination with other oral agents (and maybe insulin).

• SIDE EFFECTS:
 -- Edema: worse with insulin. May worsen heart failure.
 -- Hepatic dysfunction: liver function tests must be monitored regularly.
 -- Possible increased cardiac events with rosiglitazone (ugh...)

A. Kumagai
Thiozolidendiones: Molecular Mechanisms

NUCLEUS

GLUCOSE = THIOZOLIDINEDIONE

PPAR-γ = Nuclear Peroxisome Proliferator-Activated Receptor, gamma isoform

The “Glitazones” = PPARγ Activators
Oral Agents: Acarbose (Precose)

- Blocks α-glucosidase blocks carbohydrate absorption in the small bowel.
- Lowers postprandial glucose by up to 55 mg/dL.
- Side effects: Significant GI distress, bloating, flatulence and occasional diarrhea.
ORAL AGENTS SUMMARY

<table>
<thead>
<tr>
<th>Oral Agent</th>
<th>Major Action</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfonylureas</td>
<td>Stimulate insulin secretion</td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>Metformin</td>
<td>Suppresses hepatic glucose output</td>
<td>GI Distress, Lactic acidosis, Appetite Suppression</td>
</tr>
<tr>
<td>"Glitazones"</td>
<td>Sensitize peripheral tissues to insulin</td>
<td>Edema LFT abnormalities</td>
</tr>
<tr>
<td>Acarbose</td>
<td>Blocks carbohydrate absorption</td>
<td>GL Distress!</td>
</tr>
</tbody>
</table>

= Does not cause hypoglycemia when used alone

IMPORTANT!
New Agents

Exenatide (Byetta) and Inhaled Insulin
Exenatide (Byetta) = Incretin mimetic, which has potent glucagon-like peptide-1 (GLP-1) properties.

- Originally isolated from gila monster venom
- Part of the INCRETIN family of gut hormones
- GLP-1 is rapidly secreted from the distal ileum and colon following food ingestion and act on the pancreas, stomach, muscle, fat, and brain.
Exenatide (Byetta): modes of action

- Stimulates insulin secretion from beta cells & inhibits postprandial glucagon secretion from alpha cells
- Works directly on hypothalamus to decrease appetite
- Delays gastric emptying (decreases absorption)
- Evidence of beta cell proliferation in animal models
Exenatide (Byetta): Clinical Effects

CLINICAL EFFECTS: For use in type 2 DM ONLY
- Decreases postprandial rise in blood sugar
- Decreases HbA1c by up to 1.5%
- Induces weight loss of up to 10-20 lbs with long-term use.
Management of Diabetes Mellitus

The Diet

• Current move away from a special “Diabetic Diet” and towards an emphasis on personal and cultural preferences and considerations: The “Diabetic Diet” is being replaced by the concept of healthy eating.

• Especially for type 2 DM: emphasis on weight reduction.

• Renal failure: low protein, low potassium.

• For those on insulin and sulfonylureas: balance carbohydrates with medication to avoid postprandial or exercise-associated hypoglycemia.
Management of Diabetes

Remember: EXERCISE works to help control both type 1 and type 2 diabetes independent of weight loss!
Diabetes Care
Treatment Goals

• Premeal blood glucose values: 80-120 mg/dL
• HbA1c values: less than 7%
• Minimal hypoglycemia
• Incorporation of diabetes care successfully into one’s life.
Measures of Glycemic Control: Nonenzymatic Glycation

GLUCOSE $+ \text{PROTEIN} \rightarrow \text{ADVANCED GLYCOSYULATION END PRODUCT (AGE)} \rightleftharpoons \text{SCHIFF BASE} \rightarrow \text{AMADORI PRODUCT} \rightarrow \text{Hb}$
Nonenzymatic Glycation

Hemoglobin A\textsubscript{1c} (HbA1c) or Glycosylated hemoglobin is a long-term measurement of overall metabolic control.

- gives good picture of glycemic control over 3 months
- (Normal ranges HbA1c < 6.5% and Glyc. Hb < 8%)

Important!
Recent News…

Study Undercuts Diabetes Theory

- National Institutes of Health announced the results of the ACCORD Study suggested that individuals with type 2 diabetes who were under rigorous metabolic control (HbA1c ≤ 6.0%) had a higher risk of death than those under less rigorous control...
- Patients at risk were older with previous history of MI.
- Interim results from the ADVANCE Trial, involving ~13,000 high risk pts did not show an increased risk of death...
- So the jury is still out…
Diabetes Care
How Often Should One Check?

- Blood glucose monitoring
 Type 1 DM: as often as possible each day (3-4x).
 Type 2 DM: “as often as necessary” to achieve metabolic control.”

- HbA1c
 Type 1 DM: every 3 months.
 Type 2 DM: every 6-9 months.
DIABETIC COMPLICATIONS: Screening Exams

• Retinopathy: Retina exam
• Nephropathy: Urine microalbumin-to-creatinine ratio on random urine specimen.
• Neuropathy:
 -- Foot exam (for cracks, fissures, foreign bodies, etc.)
 -- Test vibratory sensation with 128 Hz tuning fork
 -- 10-gram monofilament test
Diabetes Care
Screening Tests for Complications

ANNUAL EXAMS:
• Ophthalmologic exam
• Urinary microalbumin/creatinine ratio (random urine)
• Cholesterol profile
• TSH (type 1 diabetes)
• Vibration testing (at least annually).

QUARTERLY (or Every Visit):
• Careful foot exam

IMMUNIZATIONS:
• Flu vaccine - every season
• Pneumonia vaccine (Pneumovax) - every 5 years.
Reduction of Risk Factors

- Control Cholesterol
- Control Hypertension
- Smoking Cessation
- Weight Loss & Exercise

Reduction of Risk Factors
The Physician as Patient Advocate

“Non-compliant” or “Uncomfortable”? “Uninterested” or “Unable”? It is the physician’s responsibility as much as the patient’s to find ways to overcome obstacles in diabetes care.
Diabetes Mellitus

PREVENTION
Diabetes Mellitus: Prevention of Type 1 DM

Animal studies and small clinical trials: low-dose insulin in individuals at high risk for type 1 DM can prevent or delay onset, either through “islet cell rest” or through undefined immunologic mechanisms.

The Diabetes Prevention Trial-Type 1 (DPT-1) *NEJM* 326:1685, 2002

- Very low-dose insulin or nothing given to relatives of individuals with type 1 DM who are at high risk for disease.
- Followed for median of 3.7 years.
- Incidence and prevalence of type 1 DM not different between treatment and control groups.
Diabetes Mellitus: Prevention of Type 2 DM

Hereditary influences very well-known to increase risk of type 2 DM. What lifestyle factors can be modified to prevent its onset?

The Finnish Diabetes Prevention Study *NEJM* 344:1343, 2001

Diabetes Prevention Program *NEJM* 346:393, 2002

-- Individuals with impaired glucose tolerance
-- Weight loss of at least 5%
-- Moderate exercise: walking, jogging, skiing, etc.

Lifestyle modification lowered the risk of type 2 DM by up to 58%, and the closer one met the intervention goals, the lower the risk.
Management of Diabetes Mellitus

Cases
Case #1

Mark N., a 40-year old engineer with type 1 diabetes, experiences persistent elevations in his prelunch BG’s. He is on a multiple-dose insulin regimen consisting of NPH 5 units at breakfast and 15 units at bedtime, along with a sliding scale of Regular insulin, 8-10 units with each meal. How may we best treat his high blood sugars at lunch?

A. Increase his breakfast NPH.
B. Increase his breakfast Regular.
C. Increase his bedtime NPH.
D. Add bedtime Regular.
E. Increase his lunchtime Regular.
Case #1

A. Increase his bedtime NPH
B. **Increase his breakfast Regular**
C. Add bedtime Regular
D. Add breakfast NPH
E. Increase his lunchtime Regular
Case #1

BREAKFAST REGULAR WILL AFFECT THE LUNCHTIME BG.

A. Increase his bedtime NPH
B. **Increase his breakfast Regular**
C. Add bedtime Regular
D. Add breakfast NPH
E. Increase his lunchtime Regular
Case #2

Diana W., a 52-year-old woman with type 2 diabetes, is managing her diabetes with a regimen of NPH 25 units and Regular 7 units at breakfast and NPH 24 and Regular 10 units at dinner. Ms. W. notes frequent episodes of hypoglycemia in the late afternoon while at work. You would suggest:

A. That she decrease her morning Regular.
B. That she decrease her morning NPH.
C. That she eat a much larger lunch.
D. That she leave work early and eat at 5:00 pm every day.
Case #2

A. That she decrease her morning Regular.
B. That she decrease her morning NPH.
C. That she eat a much larger lunch.
D. That she leave work early and eat at 5:00 pm every day.
Case #2

ON A 2-INJECTION REGIMEN, LATE AFTERNOON HYPOGLYCEMIA IS TREATED BY A DECREASE IN THE MORNING NPH.

A. That she decrease her morning Regular.
B. That she decrease her morning NPH.
C. That she eat a much larger lunch.
D. That she leave work early and eat at 5:00 pm every day.
Case #3

Anita R. is a 21-year-old physical fitness buff with type 1 diabetes on a multiple daily injection regimen consisting of NPH at breakfast and bedtime and Lispro (Humalog) by sliding scales with meals. She experiences hypoglycemia approximately 30 minutes after her 8 p.m. (i.e., after dinner) workouts. Two days ago, Anita became disoriented and confused during one of these episodes and had to be treated by paramedics. In order to avoid further episodes of hypoglycemia while maintaining “tight” metabolic control, you would advise Anita to:

A. Decrease her morning NPH.
B. Decrease her dinnertime Humalog.
C. Decrease her bedtime NPH.
D. Eat a huge dinner.
E. Don’t work out, stay at home and watch TV.
A. Decrease her morning NPH.
B. Decrease her dinnertime Humalog.
C. Decrease her bedtime NPH.
D. Eat a huge dinner.
E. Don’t work out, stay at home and watch TV.
A. Decrease her morning NPH.

B. **Decrease her dinnertime Humalog.**

C. Decrease her bedtime NPH.

D. Eat a huge dinner.

E. Don’t work out, stay at home and watch TV.
Case #4

Jerry G., a 48-year-old rock ‘n roll guitarist, has type 2 diabetes. His diabetes is complicated by obesity (5’8”, 285 lbs), mild retinopathy, and peripheral neuropathy. He has no kidney, heart or liver disease. Mr. G. been unable to control his diabetes with the maximal dose of a sulfonylurea, glipizide, and insulin, which he abhors (hates to give himself injections). In order to avoid further (or progressive) diabetic complications, you would give him:

A. A trial of another sulfonylurea.
B. Metformin (Glucophage).
C. A “glitazone,” such as rosiglitazone.
D. Your strongest recommendation that he “just keep truckin’, be a man and take the insulin.”
Case #4

A. A trial of another sulfonylurea.
B. Metformin (Glucophage).
C. A “glitazone,” such as rosiglitazone.
D. Your strongest recommendation that he “just keep truckin’, be a man and take the insulin.
Case #4

METFORMIN

Liver
GLUCOSE
MUSCLE

Major Effect

Minor Effect

GLUCOSE
INSULIN

One significant “side effect” of metformin is APPETITE SUPPRESSION

A. A trial of another sulfonylurea.
B. Metformin (Glucophage).
C. A “glitazone,” such as rosiglitazone.
D. Your strongest recommendation that he “just keep truckin’ be a man and take the insulin.

A. Kumagai
Salvador D., a 72-year-old painter, has type 2 diabetes, complicated by proliferative retinopathy, peripheral neuropathy and coronary artery disease with congestive heart failure. Mr. D. is on multiple medications for his heart, and takes insulin, NPH at bedtime, and metformin at maximal dose (1000 mg BID). His most recent HbA1c is 9.0% (target ≤ 7.0%). In order to improve his overall glycemic control, you would recommend:

A. A sulfonylurea.
B. A “glitazone,” such as rosiglitazone.
C. More insulin.
D. Zinc or chromium supplements.
Case #5

A side effect of the thiazolidinediones ("glitazones") is fluid retention and edema. This effect is apparently exacerbated by insulin, and may worsen CHF.

A. A sulfonylurea.
B. A "glitazone," such as rosiglitazone.
C. More insulin.
D. Zinc or chromium supplements
Case #6

Peggy S., a 37-year-old woman with type 1 diabetes on a multiple-daily injection regimen of Glargine (Lantus) insulin, 18 units at bedtime, along with a sliding scale of Lispro (Humalog) insulin. She is experiencing frequent episodes of fasting hyperglycemia, with blood sugars in the 210-230 mg/dL range. To remedy this situation, you would suggest:

A. That she increase her bedtime Glargine.
B. That she decrease her bedtime Glargine.
C. That she less dinner.
D. That she check several 3:00 am blood sugars.
Case #6: two different scenarios

The “Dawn Phenomenon”

You suggest:

A. That she increase her bedtime Glargine.
B. That she decrease her bedtime Glargine.
C. That she less dinner.
D. That she check several 3:00 am blood sugars.

Rise in cortisol secretion between 4-6 am causes elevated fasting blood sugars.
Case #6: two different scenarios

The “Simogi Effect”

You suggest:

A. That she increase her bedtime Glargine.
B. That she decrease her bedtime Glargine.
C. That she less dinner.
D. That she check several 3:00 am blood sugars.

Nocturnal hypoglycemia from too much insulin causes rebound hyperglycemia in the morning.
Case #3

Bottom Line: Fasting hyperglycemia may be caused by EITHER insufficient or excessive insulin.

You suggest:

A. That she increase her bedtime Glargine.
B. That she add bedtime Lispro.
C. That she less dinner.
D. That she check several 3:00 am blood sugars.
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 6: Arno Kumagai
Slide 7: DCCT, 1993
Slide 11: Arno Kumagai
Slide 13: Arno Kumagai
Slide 16: Schade et al, 1983
Slide 17: Schade et al, 1983
Slide 19: Pickup & Williams, 1991
Slide 20: Arno Kumagai
Slide 22: Arno Kumagai
Slide 23: Pickup & Williams, 1991
Slide 24: Source Undetermined; A. Kumagai
Slide 25: Holleman & Hoekstra, 1997
Slide 26: Arno Kumagai
Slide 27: Arno Kumagai
Slide 28: Arno Kumagai
Slide 29: Arno Kumagai
Slide 33: Bode and Hirsch Diab Tech Therapeutics 2 (Suppl 1), 2000
Slide 35: Pickup & Williams, 1991
Slide 36: Source Undetermined
Slide 38: Arno Kumagai
Slide 43: Arno Kumagai
Slide 44: Arno Kumagai
Slide 45: Arno Kumagai
Slide 46: Arno Kumagai
Slide 47: Arno Kumagai
Slide 51: CC BY-NC-SA mcbill, http://www.flickr.com/photos/mcbill/1539234284/, Flickr, http://creativecommons.org/licenses/by-nc-sa/2.0/