Author(s): Peter Hitchcock, PH.D., 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Non-commercial–Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Cerebellum

M1 – CNS Sequence
Peter Hitchcock, Ph.D.
The topic of today’s lecture is the cerebellum. The principal function of the cerebellum is to coordinate goal-directed and spontaneous movements, including eye movements, and regulate posture.

I. Gross anatomy of the cerebellum
II. Internal cellular anatomy and synaptic connections (circuitry)
III. Functional organization (3 functional domains)
 a. vestibulocerebellum
 b. spinocerebellum (2 subdivisions)
 c. cerebrocerebellum
IV. Motor learning and plasticity
V. Clinical aspects of the cerebellum
VI. The cerebellum and cognition
VII. Blood supply to the cerebellum
A schematic model of the motor system. The cerebellum influences movements via connections to both the brainstem and cerebral cortex.
GENERAL FEATURES:

The cerebellum regulates the following 5 functions:

1) muscle tone
2) coordination of goal directed and spontaneous movements
3) posture and balance
3) eye movements
4) motor learning
5) some cognitive functions (e.g., language acquisition)

• Each hemisphere of the cerebellum influences motor activity on the ipsilateral half of the body

• The cerebellum compares the motor plan (intent) created in the cortex with motor performance (reported from the periphery) and functions to smoothen and coordinate the movements. This is accomplished by making synaptic contacts with the brainstem ‘motor’ centers and the cerebral hemispheres.
there are three pairs of nuclei that lie within the cerebellar white matter, known as the ‘deep cerebellar nuclei’:

(from lateral to medial)
- dentate
- emboliform
- globose
- fastigial

(Embolic form, globose, fastigial nuclei visible but not labeled)
• the cerebellum has three cellular layers (plus underlying white matter)

• there are three kinds of neurons in the cortex, Purkinje cell, granule cell, and interneurons (3 types)

• climbing fibers originate from the contralateral inferior olive

• mossy fibers originate from all other afferents that enter the cerebellum
superior - mostly efferent
middle - afferent
inferior - mostly afferent

inferior olive
The cerebellum is supplied by vessels that branch from the basilar artery -
- superior cerebellar arteries
- anterior inferior cerebellar arteries
- posterior inferior cerebellar arteries
blood supply

longitudinal, functional domains
The cerebellum is believed to be the neural substrate critical to learning complex motor skills, e.g., riding a bike; professional musicians.
Loss of cerebellar function does not produce paralysis or the inability to initiate a movement. Rather, cerebellar disease produces disturbances in the coordination and fine control of movements and posture.
Basal ganglia

Cerebellum
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 5: Source Undetermined
Slide 7: Source Undetermined
Slide 8: Source Undetermined
Slide 9: Source Undetermined
Slide 10: Source Undetermined
Slide 11: Gray’s Anatomy
Slide 12: Source Undetermined
Slide 13: Source Undetermined
Slide 14: Source Undetermined
Slide 15: Source Undetermined
Slide 17: Source Undetermined
Slide 18: Source Undetermined
Slide 20: Source Undetermined