Author(s): David Miller, M.D., Ph.D., 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Noncommercial–Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Herpes Viruses

Infectious Diseases/Microbiology Sequence Course

David J. Miller, M.D., Ph.D.
Objectives

• Know the common and unique features of herpes viruses

• Appreciate the roles of both lytic and latent replication cycles of herpes viruses

• Understand the interactions between herpes viruses and the immune system

• Know the transmission routes of the herpes viruses

• Know the laboratory methods used to diagnose particular herpes virus infections

Reading assignment: Schaechter’s 4th edition, chapters 41 and 42
Herpes viruses

<table>
<thead>
<tr>
<th></th>
<th>Subfamily</th>
<th>Transmission</th>
<th>Clinical Syndromes</th>
<th>Latency site</th>
<th>Diagnosis</th>
<th>Antiviral Rx</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSV</td>
<td>Alpha</td>
<td>Cutaneous</td>
<td>Cutaneous - localized (oral, genital) CNS</td>
<td>Neurons</td>
<td>Clinical PCR Culture/DFA</td>
<td>Acyclovir</td>
<td>No</td>
</tr>
<tr>
<td>VZV</td>
<td>Alpha</td>
<td>Respiratory</td>
<td>Cutaneous - disseminated and localized</td>
<td>Neurons</td>
<td>Clinical PCR Culture/DFA</td>
<td>Acyclovir</td>
<td>Yes</td>
</tr>
<tr>
<td>CMV</td>
<td>Beta</td>
<td>Secretions (oral, urogenital)</td>
<td>Systemic Ocular, GI, hematopoietic, respiratory</td>
<td>Monocytes, macrophages</td>
<td>Serology PCR Culture/DFA</td>
<td>Ganciclovir</td>
<td>No</td>
</tr>
<tr>
<td>EBV</td>
<td>Gamma</td>
<td>Secretions (oral)</td>
<td>Systemic Lymphoma</td>
<td>B cells</td>
<td>Serology, PCR Culture/DFA</td>
<td>None</td>
<td>No</td>
</tr>
</tbody>
</table>
Herpes viruses

- Family: *Herpesviridae*
- Large, enveloped virus
- Double-stranded DNA genome (100-150 proteins)
Herpesvirus life cycle (lytic)

- Nuclear dependence
- Temporal gene expression
- Importance of viral thymidine kinase (TK)
- Direct cell lysis

Immediate early

Early

Late

Viral TK

Acyclovir/ganciclovir

Source Undetermined
Herpesvirus life cycle (latent)

1. Primary site of infection: productive infection of epithelial cells

2. Secondary site of infection and site of latent infection: sensory neuron
 - Episomal (no integration)
 - Minimal gene expression
 - Prevent immune recognition

3. Site of recurrent infection: productive infection of epithelial cells
 - Reactivation stimuli: UV light, infections, stress, *immunosuppression*

Source Undetermined
19 year old sexually active male college student presented to student health services with a two day history of painful ulcers on his penis. He had unprotected sexual intercourse with a female roommate several days prior to developing symptoms. The lesions initially progressed over one week and coalesced into larger shallow ulcers, but eventually resolved completely after another two weeks. Over the next two semesters he had recurrence of similar symptoms that weren’t related to sexual activity.
19 year old sexually active male college student presented to student health services with a two day history of painful ulcers on his penis. He had unprotected sexual intercourse with a female roommate several days prior to developing symptoms. The lesions initially progressed over one week and coalesced into larger shallow ulcers, but eventually resolved completely after another two weeks. Over the next two semesters he had recurrence of similar symptoms that weren’t related to sexual activity.

Diagnosis?
Herpes simplex

• Alphaherpesvirus

• Two serotypes (HSV-1, 2)

• Direct contact transmission
 – HSV-1: \textit{primarily} oral
 – HSV-2: \textit{primarily} genital
 – Asymptomatic transmission possible

• Epidemiology
 – HSV-1: 2/3 of adults seropositive
 – HSV-2: 1/5 of adults seropositive
 • Varies with sexual promiscuity
HSV clinical disease

• **Cutaneous lesion (NOT absolute)**
 – HSV-1: oral, perioral
 – HSV-2: genital
 – Can be asymptomatic (especially with reactivation)

• **Pathogenesis**
 – Direct epithelial cell lysis and spread to adjacent cells

• **Complications**
 – Ocular disease
 – CNS involvement (encephalitis)
 – Dissemination
HSV latency

- **Establishment**
 - Retrograde transmission
 - Sensory ganglia nerve cells

- ** Reactivation**
 - Anterograde transmission
 - UV light, stress, infection, menstruation
 - Systemic spread rare
HSV and immunity

- **NO viral clearance**

- **Immune system maturation crucial**
 - Neonatal HSV infections can be devastating

- **Control of reactivation**
 - Cell mediated immunity essential
 - Limited role of humoral immunity

- **Prevent systemic spread**
 - Immunosuppression greatly increases risk
HSV diagnosis

• Clinical syndrome

• Virus detection
 – Tzanck smear
 – Direct fluorescent antibody (DFA) test
 – PCR
 – Culture

• Serologies not helpful

Multinucleated giant cell with intranuclear inclusions

Source Undetermined
HSV treatment and prevention

• Available drugs
 – Acyclovir, valacyclovir, famciclovir

• Target groups
 – Neonatal HSV infections
 – Immunosuppressed patients (localized or systemic)
 – CNS disease
 – Genital HSV lesions

• Prophylaxis
 – Immunosuppressed patients
 – Genital recurrences

• No vaccine available
55 year old male presented to his primary care physician with a two day history of painful blisters on his left chest wall. The area initially felt “tingly” several days before the blisters appeared, and he had a mild headache but no fevers or other systemic symptoms. The area increased in size with a coalescence of the small blisters, but the lesions never crossed the midline. The blisters eventually crusted over and resolved after about three weeks, but the area remained extremely tender, even to the slightest touch.
55 year old male presented to his primary care physician with a two day history of painful blisters on his left chest wall. The area initially felt “tingly” several days before the blisters appeared, and he had a mild headache but no fevers or other systemic symptoms. The area increased in size with a coalescence of the small blisters, but the lesions never crossed the midline. The blisters eventually crusted over and resolved after about three weeks, but the area remained extremely tender, even to the slightest touch.

Diagnosis?
Varicella zoster virus (VZV)

- Alphaherpesvirus

- Aerosol/respiratory transmission
 - Highly contagious
 - Direct inoculation unusual

- Epidemiology
 - >90% of adults seropositive
 - Vaccination program may change epidemiology
VSV clinical disease

- **Primary exposure**
 - *MOST* exposures produce symptomatic disease
 - Local respiratory lymph node replication
 - Primary viremia – secondary viremia (lymphocyte infection)
 - Cutaneous lesion development

- **Pathogenesis**
 - Direct epithelial cell lysis and spread to adjacent cells

- **Complications**
 - Pneumonia and CNS involvement
 - Immunosuppressed at highest risk
 - Ramsay-Hunt syndrome (CN VII palsy, loss of taste, auricle vesicles)
VZV latency

• **Establishment**
 – Dorsal root sensory ganglia nerve cells infected during *viremia*
 – *Contrast to HSV (direct retrograde spread)*

• **Reactivation (shingles)**
 – Anterograde transmission
 – Dermatomal distribution
 • Ophthalmic division of trigeminal nerve - DANGER
 – Advancing age, immunosuppression
 – Systemic spread rare
 – Post-herpetic neuralgia most troublesome complication
VZV diagnosis

• **Clinical syndrome**
 – Simultaneous lesions at all stages

• **Virus detection**
 – Direct fluorescent antibody test (DFA)
 – PCR
 – Culture

• **Serologies helpful to determine exposure risk**
VZV treatment

• HSV drugs (acyclovir) less active but still useful

• Target groups
 – Immunosuppressed patients
 – CNS/ocular disease
 – Reactivation (reduce post-herpetic neuralgia)
 – Most effective if given <72 h from symptom onset
 – Prednisone efficacy for shingles questionable
VZV prevention

- **Effective vaccine available**
 - Live, attenuated virus

- **Target populations**
 - Routine childhood vaccination (VARIVAX®, ProQuad®)
 - Persons > 60 yo *regardless* of previous shingles history
 - Healthy adolescents and adults without evidence of immunity
 - High risk for VZV transmission (healthcare workers, teachers, childcare employees, chronic care facilities)
 - Non-pregnant women of childbearing age
 - Household contacts of immunocompromised persons

- **Contraindications**
 - Immunosuppression
 - Pregnancy

http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5604a1.htm
46 year old female had kidney transplant secondary to diabetic nephropathy three months ago. Her postoperative course was uneventful, and she was tolerating her immunosuppressive medications. She rarely left the house out of concern for picking up an infection, but over the past three weeks she developed fever, fatigue, and decreased appetite but no significant localizing symptoms. Blood tests showed a severely decreased white blood cell count.
46 year old female had *kidney transplant* secondary to diabetic nephropathy three months ago. Her postoperative course was uneventful, and she was tolerating her *immunosuppressive medications*. She rarely left the house out of concern for picking up an infection, but over the past three weeks she developed *fever, fatigue, and decreased appetite* but no significant localizing symptoms. Blood tests showed a severely *decreased white blood cell count*.

Diagnosis?
Cytomegalovirus (CMV)

• Betaherpesvirus

• Direct contact transmission
 – Saliva, breast milk, urogenital
 – Blood products, organ transplantation
 – Transplacental (“TORCH” infections)

• Epidemiology
 – Approximately 50% of adults in U.S. seropositive
 – >90% in underdeveloped countries
CMV clinical disease

• **Primary exposure**
 – Usually asymptomatic
 – Can produce “mono-like” syndrome (non-specific symptoms)

• **Complications**
 – Congenital CMV
 • CNS involvement (encephalomalacia, hydrocephalus, retinitis)
 – End-organ damage in immunocompromised
 • Ocular (retinitis)
 • CNS (encephalitis)
 • Respiratory
 • Gastrointestinal
 • Bone marrow
CMV latency

• **Establishment**
 – Monocytes and macrophages
 – Mechanisms poorly understood

• **Reactivation**
 – *DIRECTLY* linked with immune status
 – Replication in wide variety of cell types
 • Transplanted organs
 – Can *augment* immunosuppression
CMV diagnosis

- **Clinical syndrome non-specific**

- **Virus detection**
 - PCR (quantitative)
 - Histopathology (“owl eye”)
 - Direct fluorescent antibody (DFA) test
 - Culture

- **Serologies helpful**
 - Assess risk for reactivation if immunosuppression anticipated
CMV treatment and prevention

• Antiviral drugs available
 – HSV drugs (acyclovir) less active
 – Ganciclovir (valganciclovir), foscarnet, cidofovir
 – Resistance problematic

• Target groups
 – NOT for primary infection in immunocompetent patient
 – Immunosuppressed patients
 – Pre-emptive therapy often used
 • CMV disease versus infection

• Prevention
 – No vaccine available
 – Prophylactic ganciclovir frequently used
18 year old student presented to his primary physician with one week history of fever, fatigue, sore throat, swollen glands. He recently started a new relationship with a classmate who had no symptoms. On physical exam, his oropharynx was erythematous without tonsillar exudate and he had prominent cervical lymphadenopathy. Rapid strep test was negative. Blood test showed an increased white blood cell count with atypical appearing lymphocytes. His symptoms eventually resolved over 2 weeks, but his fatigue persisted for 6 months.
18 year old student presented to his primary physician with one week history of fever, fatigue, sore throat, swollen glands. He recently started a new relationship with a classmate who had no symptoms. On physical exam, his oropharynx was erythematous without tonsillar exudate and he had prominent cervical lymphadenopathy. Rapid strep test was negative. Blood test showed an increased white blood cell count with atypical appearing lymphocytes. His symptoms eventually resolved over 2 weeks, but his fatigue persisted for 6 months.

Diagnosis?
Epstein-Barr virus (EBV)

- **Gammaherpesvirus**

- **Direct contact transmission**
 - Saliva, respiratory secretions
 - Transfusion, transplantation

- **Epidemiology**
 - Approximately 50-70% of adults in U.S. seropositive
 - >90% in underdeveloped countries
EBV clinical disease

- **Primary exposure**
 - Often asymptomatic
 - Typically produce mononucleosis syndrome
 - Fever, sore throat, fatigue (prolonged)
 - Hematologic abnormalities, hepatitis

- **Complications (malignancies)**
 - Linked to immune status and latency in B cells
 - Post-transplant lymphoproliferative disorder (PTLD)
 - Lymphoma
 - Nasopharyngeal carcinoma
 - Burkitt’s lymphoma (Africa)
 - Primary CNS lymphoma (HIV/AIDS)
 - Hodgkin’s disease
EBV diagnosis

• Clinical syndrome *non-specific*

• Virus detection
 – PCR
 – Direct fluorescent antibody (DFA) test
 – Culture

• Serologies helpful
 – Assess risk for reactivation
 – Monospot test
 • Heterophil antibodies directed against RBC from other species (NOT EBV-specific)
EBV treatment and prevention

- **Antiviral drugs (acyclovir, ganciclovir)**
 - In vitro activity but no evidence for effectiveness in patients

Correct underlying immunosuppressed status

- **Prevention**
 - No vaccine available
Other herpesviruses

- **Human herpes virus 6 (HHV6)**
 - Betaherpesvirus (similar to CMV)
 - Etiology of roseola infanatum

- **HHV8**
 - Gammaherpesvirus (similar to EBV)
 - Also called Kaposi’s sarcoma herpes virus (KSHV)
Slide 5: David Miller
Slide 6: Sources Undetermined
Slide 7: Source Undetermined
Slide 8: Source Undetermined
Slide 10: Source Undetermined
Slide 13: Source Undetermined
Slide 14: Source Undetermined
Slide 16: Source Undetermined
Slide 19: Source Undetermined
Slide 24: Adapted from Reven Sanchez, Wikimedia Commons, CC:BY-SA, http://creativecommons.org/licenses/by-sa/3.0/
Slide 30: University of Michigan Kellogg Eye Center
Slide 32: Source Undetermined
Slide 35: Source Undetermined

Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy