Author(s): Heidi IglayReger, Ph.D., Mark D. Peterson, Ph.D., 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution 3.0 License: http://creativecommons.org/licenses/by/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)
Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
Creative Commons – Zero Waiver
Creative Commons – Attribution License
Creative Commons – Attribution Share Alike License
Creative Commons – Attribution Noncommercial License
Creative Commons – Attribution Noncommercial Share Alike License
GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ
Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.
To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Energy Balance and Obesity: The Role of Physical Activity for Weight Management & Morbidity/Mortality

Heidi B. IglayReger, Ph.D.
Physical Activity & Exercise Intervention
University of Michigan, Medicine

Most slides contributed by: Mark D. Peterson, Ph.D., CSCS*D, USAW --- Research Fellow, PM&R

Spring 2009
M1 Embryology
After today’s lecture, you should be able to answer the following questions

• What is energy balance?
• How is obesity defined?
 – What is BMI? When is it appropriate?
• What changes with obesity?
 – How is body weight controlled?
• Is energy balance possible?
 – What are the three components of total energy expenditure?
 – How is metabolism calculated? Measured? How are energy balance and obesity associated?
 – What is an optimal program for body weight change?
• Is obesity bad? Why?
What is energy balance?
Defining Obesity: Simple, right…?

- Wikipedia: A condition in which the natural energy reserve, stored in fat exceeds healthy limits.
- WHO: For adults, body mass index (BMI) > 30
 - Calculate your BMI
 - When is this appropriate?
BMI Standard Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>BMI</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underweight</td>
<td><18.5</td>
<td>High Risk</td>
</tr>
<tr>
<td>Normal Range</td>
<td>18.5-24.9</td>
<td>Average</td>
</tr>
<tr>
<td>Overweight</td>
<td>>25</td>
<td>Increased</td>
</tr>
<tr>
<td>Pre-obese</td>
<td>25-29.9</td>
<td>Slight</td>
</tr>
<tr>
<td>Obese class 1</td>
<td>30-34.9</td>
<td>Moderate</td>
</tr>
<tr>
<td>Obese class 2</td>
<td>35-39.9</td>
<td>Severe</td>
</tr>
<tr>
<td>Obese class 3</td>
<td>>40</td>
<td>Very Severe</td>
</tr>
</tbody>
</table>
Maurice Green

- Former “World’s Fastest Man”
- Overweight
“Normal Weight Obesity” Caveat

• Recent findings demonstrated that so-called "normal weight obesity" (i.e. normal BMI yet high adiposity), among otherwise healthy adults

• Independently associated with metabolic dysregulation and cardiovascular mortality.

Fitness vs Fatness

- Sumo wrestlers lose 10 to 20 life years
 - Due to fat or ETOH or Puffer Fish?
 - Those who lose weight after retiring live longer

- Fat and fit live longer than thin and unfit.
- Predict mortality independently.
Standards of Body Fat Percentages

* Must consider Waist Circumference > 85 cm (~33”)
**Must consider Waist Circumference > 100 cm (~39”)

Measuring body composition

- Anthropometrics
- Hydrostatic Weight
- Whole Body Plethysmography
- Bioelectrical Impedance Analysis (BIA)
- Dual-energy X-ray absorptiometry (DXA)

[Image of Bod Pod removed: http://gizmodo.com/images/2006/05/bodpod.jpg]
Of course adiposity increases with obesity… What else changes?
Leptin

• Adipokine
 – Body fat
 – Appetite

• Is leptin high or low in obese individuals?
Moderately obese female mice (KK/HIJ): Exercise, insulin, leptin

Unpublished data from Bodary, IglayReger et al
Metabolic Characteristics in Obesity
(compared to non-obese controls)

- Leptin: High
- RMR: High
- Fat Oxidation: High
- Sympathetic NS activity: High
- Insulin Sensitivity: Low
OBESITY IS A NORMAL ADAPTATION TO A STATE OF ENERGY IMBALANCE
How much energy is needed to remain in energy balance?
Total Energy Expenditure (TEE)

ALL voluntary muscle activity

TEF 10-30% of total energy expenditure

Physical Activity 20%

BMR 70%

Absolute necessities: Brain, breathing, circulate and clean blood

What influences TEE?
Estimate TEE

- Calculate your BMR/RMR
- Harris Benedict equation
 - **Women**: BMR = 655 + (4.35 x weight in pounds) + (4.7 x height in inches) - (4.7 x age in years)
 - **Men**: BMR = 66 + (6.23 x weight in pounds) + (12.7 x height in inches) - (6.8 x age in years)
Muscle influences BMR

21 year old woman

63 year old woman

Source Undetermined
Estimate TEE (cont)

- TEF + Physical Activity ~ Activity Factor
- Activity factor category definition
 - 1.2 Sedentary: Little or no exercise and desk job
 - 1.375 Lightly Active: Light exercise or sports 1-3 days/wk
 - 1.55 Moderately Active: Moderate exercise or sports 3-5 days/wk
 - 1.725 Very Active: Hard exercise or sports 6-7 days a week
 - 1.9 Extremely Active: Hard daily exercise or sports and physical job
Energy Expenditure

• Extreme examples
 – Tour de France: 6000 calories / day
 – Triathlons: 4500 calories / day
 – Distance Runners: 3500 calories / day

• Energy expenditure from physical activity
 = ____ (intensity, duration, frequency)
<table>
<thead>
<tr>
<th>Physical Activity</th>
<th>MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Intensity Activities</td>
<td></td>
</tr>
<tr>
<td>sleeping</td>
<td>0.9</td>
</tr>
<tr>
<td>watching television</td>
<td>1.0</td>
</tr>
<tr>
<td>writing, desk work, typing</td>
<td>1.8</td>
</tr>
<tr>
<td>walking, less than 2.0 mph (3.2 km/h), level ground, strolling, very slow</td>
<td>2.0</td>
</tr>
<tr>
<td>Moderate Intensity Activities</td>
<td></td>
</tr>
<tr>
<td>bicycling, stationary, 50 watts, very light effort</td>
<td>3.0</td>
</tr>
<tr>
<td>calisthenics, home exercise, light or moderate effort, general</td>
<td>3.5</td>
</tr>
<tr>
<td>bicycling, <10 mph (16 km/h), leisure, to work or for pleasure</td>
<td>4.0</td>
</tr>
<tr>
<td>bicycling, stationary, 100 watts, light effort</td>
<td>5.5</td>
</tr>
<tr>
<td>Vigorous Intensity Activities</td>
<td></td>
</tr>
<tr>
<td>jogging, general</td>
<td>7.0</td>
</tr>
<tr>
<td>calisthenics (e.g. pushups, situps, pullups, jumping jacks), heavy, vigorous effort</td>
<td>8.0</td>
</tr>
<tr>
<td>running jogging, in place</td>
<td>8.0</td>
</tr>
</tbody>
</table>

Ainsworth et al., 2000.
Measuring TEE

• BMR in the lab: Calorimetry
 - Food + O₂ = Heat + O₂ + H₂O
 • Direct – measure heat
 • Indirect – measure O₂
• Doubly labeled water
• Free living:
 - Measurement: Accelerometer, sensewear, pedometer, double labeled water
 - Recall, diary
What causes a change in body weight?

How best to lose fat?
Caloric Restriction and Weight Loss

- Small controlled / physiologic trials
- Large Randomized Controlled Trials
- Very large historical events / disasters
 - Somalia
 - Holocaust
 - Irish Potato Famine
Is caloric restriction alone the best answer?

What are common problems / limitations?
National Weight Registry

- Recruitment for the Registry is ongoing. If you are at least 18 years of age and have maintained at least a 30 pound weight loss for one year or longer you may be eligible to join our research study.

- 80% of persons in the registry are women and 20% are men.
 - The "average" woman is 45 years of age and currently weights 145 lbs, while the "average" man is 49 years of age and currently weights 190 lbs.
 - Registry members have lost an average of 66 lbs and kept it off for 5.5 years.

- These averages, however, hide a lot of diversity:
 - Weight losses have ranged from 30 to 300 lbs.
 - Duration of successful weight loss has ranged from 1 year to 66 years!
 - Some have lost the weight rapidly, while others have lost weight very slowly--over as many as 14 years.

http://www.nwcr.ws/default.htm
National Weight Registry

• 45% of registry participants lost the weight on their own and the other 55% lost weight with the help of some type of program.

• 98% of Registry participants report that they modified their food intake in some way to lose weight.

• 94% increased their physical activity, with the most frequently reported form of activity being walking.

• There is variety in how NWCR members keep the weight off. Most report continuing to maintain a low calorie, low fat diet and doing high levels of activity.

 – 78% eat breakfast every day.
 – 75% weigh themselves at least once a week.
 – 62% watch less than 10 hours of TV per week.
 – 90% exercise, on average, about 1 hour per day.

http://www.nwcr.ws/default.htm
What makes it easier to decrease weight?

• Physical: Exercise, medication, surgery
• Mental: Resolve non-hunger issues
• Workable plan: Easy tracking, change environment, support
 – How to track intake?

• How to lose 1 lb of fat…
Healthy People 2010 Objectives

“Physicians and other health care providers should counsel their patients to be physically active as part of routine health care visits “

U.S. Preventive Services Task Force 2000
But I… hate to exercise, don’t have time, fill-in the excuse
Total Energy Expenditure

- ALL voluntary muscle activity
- TEF 10-30% of total energy expenditure
- Physical Activity 20%
- TEF 10%
- BMR 70%

What influences TEE?

Absolute necessities: Brain, breathing, circulate and clean blood

Source Undetermined
Prevalence of Inactivity

CDC: Adults participating in NO leisure-time physical activity
Current average = 40%
Energy Expenditure and All-Cause Mortality
Harvard Alumni Study

Relative Risk vs. Kcal per week:
- < 500: 1.0
- 500-999: 0.9
- 1000-1499: 0.8
- 1500-1999: 0.7
- 2000-2499: 0.6
- 2500-2999: 0.5
- 3000-3499: 0.4
- > 3500: 0.3
Mortality Risk per 10,000 person years among individuals with a BMI > 25

Fitness Category

Low
Medium
High

Age-Adjusted Death Rates per 10,000 Person Years of Follow-Up: Cooper Clinic Men and Women

![Bar chart showing age-adjusted death rates per 10,000 person years of follow-up for men and women at different fitness levels (low, moderate, high). The chart indicates higher death rates for men compared to women at all fitness levels.](chart.png)

- **Low Fitness Level**
 - Men: High death rate
 - Women: Moderate death rate

- **Moderate Fitness Level**
 - Men: Moderate death rate
 - Women: Low death rate

- **High Fitness Level**
 - Men: Low death rate
 - Women: Very low death rate

Referenced from JAMA 282:2397, 1980.
Mortality Rates from Five Population-based Studies on Physical Activity or Physical Fitness

![Graph showing comparative mortality rates across different levels of activity or fitness. The graph includes lines for LRC, ACLS, Harvard, MRFIT, and Civil Servants, with mortality rates on a logarithmic scale.]
Exercise recommendations
Aerobic Activity

(Chronic Disease Protection)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>≥ 5 d/wk for moderate intensity, or ≥ 3 d/wk for vigorous intensity</td>
</tr>
<tr>
<td>Intensity</td>
<td>Moderate intensity between 3.0 and 6.0 METS; vigorous intensity above 6.0 METS</td>
</tr>
<tr>
<td>Duration</td>
<td>≥ 30 min/d of moderate-intensity activity, in bouts of at least 10 min each; continuous vigorous activity ≥ 20 min/d</td>
</tr>
</tbody>
</table>

ACSM/AHA Guidelines for Physical Activity in Healthy Adults
Source: Haskell et al. *Medicine & Science in Sports & Exercise, July, 2007*
Weight Gain & Weight Loss

<table>
<thead>
<tr>
<th>Category</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevent unhealthy weight gain</td>
<td>60 minutes of moderate to vigorous intensity on most days of the week</td>
</tr>
<tr>
<td>Sustain weight loss</td>
<td>60-90 minutes of moderate intensity activity daily</td>
</tr>
</tbody>
</table>

ACSM/AHA Guidelines for Physical Activity in Healthy Adults
Muscle Strengthening Activity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Frequency</td>
<td>> 2 d/wk</td>
</tr>
<tr>
<td>- Exercises</td>
<td>8 -10 involving the major muscle groups</td>
</tr>
<tr>
<td>- Sets & Repetitions</td>
<td>> 1 set of 8-12 repetitions</td>
</tr>
</tbody>
</table>

ACSM/AHA Guidelines for Physical Activity in Healthy Adults
Scare tactics: Some figures that should SCARE you and your [future] patients
Obesity Trends* Among U.S. Adults
(*BMI ≥30, or about 30 lbs. overweight for 5’4” person)
Age-Adjusted Standardized Prevalence of Overweight (BMI 25–29.9) and Obesity (BMI ≥ 30)

CDC/NCHS, United States, 1960-94, ages 20-74 years
Prevalence of Diabetes Among U.S. Adults, BRFSS, 1990

Prevalence of Diabetes Among U.S. Adults, BRFSS, 1997-2000

Is obesity bad? Is it limited to adults?
Childhood Obesity: Gut Check Time for Parents
Changes in the Prevalence of Obesity (BMI > 95th Percentile) Among U.S. White and Black Female Children Ages 6-11 years

Source Undetermined
Tracking BMI-for-Age from Birth to 18 Years with Percent of Overweight Children who Are Obese at Age 25

Whitaker et al. NEJM: 1997;337:869-873
CVD Risks in Youth

• % of children, aged 5-10 with…
 – 1 or more adverse CVD, risk factor level: 27.1%
 – 2 or more adverse CVD risk factor levels: 6.9%

• % of OVERWEIGHT children, aged 5-10 with…
 – 1 or more adverse CVD, risk factor level: 60.6%
 – 2 or more adverse CVD, risk factor levels: 26.5%

Can you answer the following questions?

• What is energy balance?
• How is obesity defined?
 – What is BMI? When is it appropriate?
• What changes with obesity?
 – How is body weight controlled?
• Is energy balance possible?
 – What are the three components of total energy expenditure?
 – How is metabolism calculated? Measured? How are energy balance and obesity associated?
 – What is an optimal program for body weight change?
• Is obesity bad? Why?
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 8: “Maurice Green” by Jimmy Harris, Wikimedia Commons
 http://en.wikipedia.org/wiki/File:Maurice_Greene,_Sydney2000.jpg CC:BY 2.0 http://creativecommons.org/licenses/by/2.0/deed.en

Slide 12: Modified from Life Measurements Inc; Original image: http://gizmodo.com/images/2006/05/bodpod.jpg

Slide 15: Unpublished data from Bodary, IglayReger et al

Slide 19: Source Undetermined

Slide 21: Source Undetermined

Slide 34: Source Undetermined

Slide 35: CDC

Slide 36: Harvard Alumni Study

Slide 38: JAMA 282:2397, 1980

Slide 39: Source Undetermined

Slide 45: Source Undetermined

Slide 46: CDC/NCHS, United States, 1960-94, ages 20-74 years

Slide 47: CDC

Slide 48: CDC

Slide 49: CDC

Slide 50: CDC

Slide 51: CDC

Slide 52: Oster et al, Am. J. Managed Care, 2000

Slide 55: Source Undetermined

Slide 56: Whitaker et al. NEJM: 1997;337:869-873