Author(s): MELO 3D Project Team, 2011

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution – Share-Alike 3.0 License: http://creativecommons.org/licenses/by-sa/2.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/privacy-and-terms-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

<table>
<thead>
<tr>
<th>License Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creative Commons – Zero Waiver</td>
<td>Works a copyright holder has dedicated to the public domain.</td>
</tr>
<tr>
<td>Creative Commons – Attribution License</td>
<td>Works that a copyright holder permits you to use, share and adapt.</td>
</tr>
<tr>
<td>Creative Commons – Attribution Share Alike License</td>
<td>Works that a copyright holder permits you to use, share and adapt.</td>
</tr>
<tr>
<td>Creative Commons – Attribution Noncommercial License</td>
<td>Works that a copyright holder permits you to use, share and adapt.</td>
</tr>
<tr>
<td>Creative Commons – Attribution Noncommercial Share Alike License</td>
<td>Works that a copyright holder permits you to use, share and adapt.</td>
</tr>
</tbody>
</table>

Make Your Own Assessment

<table>
<thead>
<tr>
<th>License Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Domain – Expired</td>
<td>Works that are no longer protected due to an expired copyright term.</td>
</tr>
<tr>
<td>Public Domain – Self Dedicated</td>
<td>Works that a copyright holder has dedicated to the public domain.</td>
</tr>
<tr>
<td>Public Domain – Ineligible</td>
<td>Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b))</td>
</tr>
<tr>
<td>Fair Use</td>
<td>Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107)</td>
</tr>
</tbody>
</table>

laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
WebSpectra
An Organic Chemistry LO

Renata Everett and Grace Winschel
MELO3D Meeting, June 14, 2011
University of Michigan, Ann Arbor
WebSpectra

- Spectroscopy is a widely used identification technique in Organic Chemistry

- Many students learning introductory spectroscopy in CH216 struggle to learn how to interpret spectra

- Website provides 1H-NMR, 13C-NMR, IR, COSY and DEPT spectra practice problems and solutions.

Website can be found at: http://www.merlot.org/merlot/viewMaterial.htm?id=88400
Welcome to WebSpectra - This site was established to provide chemistry students with a library of spectroscopy problems. Interpretation of spectra is a technique that requires practice - this site provides 1H NMR and 13C NMR, DEPT, COSY and IR spectra of various compounds for students to interpret. Hopefully, these problems will provide a useful resource to better understand spectroscopy.

This project is supported by Cambridge Isotope Laboratories and the UCLA Department of Chemistry and Biochemistry.

Project Director
Professor Craig A. Merlic

NMR Facility Contributor
Dr. Jane Strouse

©Copyright 1997 Craig A. Merlic, Barry C. Fam and The Regents of University of California

Instructional Documents

- Solving Spectral Problems
- Overview of NMR Spectroscopy
- Notes on NMR Solvents
- Types of NMR Spectra
- Introduction to IR Spectra
- Table of IR Absorptions

Awards

Top 5% Chemistry Site

Why This is a Great LO:

- Drill and Practice
- Instruction manual provided
- Range of difficulty levels
- Solutions provided
- Helpful links to other spectroscopy tools and information
Beginning Problem #1

C₄H₈O₂
NMR Solvent: CDCl₃

1H NMR Spectrum - C₄H₈O₂

Peaks: 4.0665 ppm (1627.13 Hz)

13C NMR Spectrum - C₄H₈O₂

Peaks: 170.939 ppm

View Structure Solution

ethyl acetate
ethyl ethanoate

What Needs Improvement:

- Some problems are too advanced for the undergraduate coursework at Michigan
 - Needs a slightly modified wrapper

- Limited amount of problems

- Unsightly