Attribution Key
for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Identified Best Learning Objects

• Excellent for review, visualizations and theory
 • University of Alberta IR Spectroscopy Tutorial
 • University of Alberta NMR Spectroscopy Tutorial
We Need More Practice!

Identification of Organic Compounds Using IR and 1H-NMR Spectroscopy

The following infrared and proton NMR spectra provide a good introduction to the use of these techniques for identifying organic compounds and their structures. The top spectra are IR and the bottom spectra are 1H-NMR. Based on the spectra and the given molecular formula, write the structure of each compound.

Compound 1, C$_{10}$H$_{14}$O
We Need More Practice!

• Practice is GREAT.

• These can be improved.

• No information is given regarding to HOW to solve these problems.

• No explanations accompany answers.

Jing Wrappers!

Help to guide problem solving!
What About Student-Run Discussions?

- Students teaching other students how to understand spectroscopy is great on every level.

- Can we use new online learning objects to facilitate discussions about spectroscopy?

 Voice Thread.

- Upload difficult problems and have students make their own interpretations of what the spectra may indicate.
 - Extra GSI points for insights and good chemical intuition shown in the thread?
Implementation

• Using Sitemaker to make a comprehensive website full of our new wrapped learning objects.

• Install LOs in Renata and Gracie’s lab sections.

• Assign certain LOs and collect work.
 • Work will not be graded.

• Continue developing technique-based LOs for the winter term.
Other Ideas

- Include a repository of optional LOs on our Sitemaker site for additional practice

 - Carry over topics from 211 for refreshers

 - Include advanced references for topics covered

 - Endless amounts of practice problems
Thank You!
Questions? Suggestions?