Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC §105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ*

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Lecture Outline

Mitral Stenosis

Mitral Regurgitation

• Etiology
• Pathophysiology
• Clinical features
• Diagnostic testing
• Differential diagnosis
• Management
Mitral Stenosis: Pathophysiology

Etiology: rheumatic; female > male by 6:1

Mitral leaflets:

- Large anterior is contiguous to aorta
- Smaller posterior is contiguous to left atrial endocardium
- Normal area: 4-5cm2
Mitral Stenosis: Pathophysiology

- **Fundamental problem:** Inability to get blood from left atrium → left ventricle

- **Stenotic process:**
 - Scarring and fibrosis of leaflets and chordae tendineae
 - Commissural fusion
 - Leads to funnel-shaped orifice and pressure gradient across valve
Mitral Stenosis: Pathophysiology
Mitral Stenosis: Pathophysioloogy

• Consequences of ↑ left atrial pressure:
 – Left atrial enlargement, blood stasis may lead to atrial thrombus formation and embolism
 – Development of atrial fibrillation

• Consequences of ↑ pulmonary vein pressure
 – Leads to pulmonary artery HTN
 – Then RV hypertrophy and dilation
Mitral Stenosis: Pathophysiology

• Measuring severity: valve area
 – Severe: $\leq 1.0 \text{ cm}^2$
 – Moderate: 1.0-1.4 cm2
 – Mild: 1.5-4.0 cm2

• Symptoms unusual until area $\leq 1.5 \text{ cm}$ but... during unusual flows (eg. exercise) or ... tachycardia which left atrial filling time... dyspnea may occur

• Symptoms progress as valve narrows
Mitral Stenosis: Clinical Features

History

- Long course before sx onset
- Sx worsen with onset of atrial fibrillation
- Typically asx then dyspnea with marked effort then minimal effort then orthopnea, paroxysmal nocturnal dyspnea
Mitral Stenosis: Clinical Features

History

• Fatigue is common → patient cannot augment cardiac output

• Hemoptysis

• Embolic stroke…. usually when patient is in atrial fibrillation
Mitral Stenosis: Clinical Features

Physical exam:

- Palpation – may be a parasternal lift (RV)
- Auscultation:
 1. Accentuated first heart sound (S_1)
 2. Opening snap – sudden stop in leaflet opening
 3. Diastolic rumble

Higher left atrial P₀, shorter S_2 to OS interval
Mitral Stenosis: Clinical Features

Diastolic rumble:
- Low frequency murmur
- Occurs after opening snap (OS)
- Decrescendo contour

Pulmonary Hypertension:
- $\uparrow P_2$ component of S_2
Mitral Stenosis

Diagnostic testing

- Chest radiology
- Electrocardiography
- Echocardiography
- Cardiac catheterization
Mitral Stenosis: CXR findings

Reflect left atrial HTN

- Double density right cardiac border
- Convexity (LA appendage) just below left PA → 4 bump sign: aorta, pulm artery, atrial appendage, left ventricle
- Elevated left main bronchus
- Kerley lines
Mitral Stenosis: The ECG
Mitral Stenosis

Diagnostic testing

• Chest radiology
• Electrocardiography
• Echocardiography
• Cardiac catheterization
Echocardiography: Parasternal

Normal

Mitral Stenosis
Echocardiography: Short Axis

Normal

Mitral Stenosis
Mitral Stenosis: Clinical Manifestations and Diagnosis

- Echo: 2D images
 - Increased LA size
 - Doming of valve leaflets
 - Valve stenosis
 - Valve area can be planimetered
Mitral Stenosis: Cardiac Catheterization

- Not required to establish dx in young patients – echo is sufficient
- Cath may be needed if:
 - Sx disproportionate to objective evidence
 - Other forms of heart disease suspected… eg. CAD
 - Mitral regurgitation of uncertain degree
Mitral Stenosis

Differential Diagnosis

- Atrial myxoma
- Cor triatriatum
- Congenital mitral stenosis
Mitral Stenosis: Management

Medical

• 2° prevention: penicillin \(\rightarrow \) years

• Rate control for atrial fibrillation: beta-blockade, digoxin

• Anticoagulation

• Diuretics and rate control for congestion
Mitral Stenosis

Mechanical Relief

- Closed surgical commissurotomy
- Open surgical commissurotomy
- Valve replacement
- Balloon mitral commissurotomy
Mitral Regurgitation
Mitral Regurgitation: Etiology

Mitral annulus
- Annular calcification
Leaflets
- Myxomatous degeneration
- Rheumatic disease
- Endocarditis
- SAM (hypertrophic cardiomyopathy)
Chordae tendineae
- Rupture (idiopathic)
- Endocarditis
Papillary muscles
- Dysfunction or rupture
Left ventricle
- Cavity dilatation

Schematic representation of mitral valve pathologies removed
Mitral Regurgitation: Pathophysiology

Acute Mitral Regurgitation:
Pulmonary Edema
High LA Pressure

Chronic Mitral Regurgitation:
Dilated LA with less elevated pressure
Mitral Regurgitation: Hemodynamics

- ECG
- LV
- LA
- Time
- Heart sounds
- S1
- S2
- Tall v wave
Mitral Regurgitation: Pathophysiology

• May be **acute** or **chronic**

• **Chronic MR:**
 – Total stroke volume increases
 – Blood → LA to offload LV
 – LV enlarges (ventricular remodeling)
Mitral Regurgitation: Pathophysiology

- **NORMAL (SYSTOLE)**
- **ACUTE MITRAL REGURGITATION**
- **CHRONIC MITRAL REGURGITATION**
Mitral Regurgitation: Clinical Features

- Mild MR ➔ no sx
- When sx occur
 - Fatigue
 - Dyspnea
- Physical Exam:
 - Lateral; dynamic LV apex beat
 - Often diminished S₁ (leaflet don’t coapt); S₃ often present
 - Apical systolic murmur
 - Holosystolic murmur to axilla
Mitral Regurgitation: Auscultation

(a) Slight

Late systolic murmur—
a preceding click indicates prolapse.

(b) Moderate

Loud pansystolic murmur
with late systolic crescendo.

Loud pansystolic murmur
continuing past A2
Soft opening snap
Loud third sound
Short mid-diastolic murmur

A2 softly causing wide
splitting of second sound.
Mitral Regurgitation: Diagnostic Tests

• CXR: LA and LV enlargement
• ECG: Normal initially…then shows LV hypertrophy
• Echo:
 – LAE
 – LV enlargement
 – Doppler and color flow allow semi-quantitative estimate (1-4+)
Mitral Regurgitation: Parasternal
Severity of Mitral and Tricuspid Regurgitation

Schematic representation of varying degrees of severity of regurgitation removed
Mitral Regurgitation: Clinical Features

Mitral Valve Prolapse:

- Protrusion of MV leaflets into LA during systole; more common in women
- Valve changes → leaflets show…
 - voluminous
 - redundant
 - thickened
 - myxomatous
- Sx: palpitations, dyspnea if severe
Mitral Regurgitation: Mitral Prolapse

Exam:

- Skeletal changes – scoliosis, pectus excavatum; Marfan’s in some
- Midsystolic click; may see late systolic murmur
- Echo: Mid to late systolic prolapse of posterior leaflet. Doppler or color echo reveals severity of MR
Mitral Regurgitation: Parasternal
Mitral Regurgitation: Mitral Prolapse

Complications:

• Many patients go thru life without problems
• MR can progress
• Chordal rupture can lead to sudden, severe MR (esp. in men)
• Endocarditis in those with murmur
• TIA’s rare treat with ASA
• Sudden death – very rare
Mitral Annulus

Schematic representation of heart beat stages removed.

NORMAL

POSTERIOR

VENTRICULAR

DIASTOLE

VENTRICULAR

SYSTOLE

CALCIFICATION

Source Undetermined
Papillary muscle dysfunction:

• Spectrum from intact but poorly functioning PM to acute rupture

• Frequently caused by:
 – Ischemia or infarction of papillary muscle or underlying LV myocardium

• Less frequently by LV dilation or infiltrative process
Mitral Regurgitation: Papillary Muscle Dysfunction
Mitral Regurgitation: Papillary Muscle Dysfunction
Mitral Regurgitation: Differential Diagnosis

Conditions with systolic murmur:

- VSD
- Aortic stenosis
- Tricuspid regurgitation
- Hypertrophic cardiomyopathy
Mitral Regurgitation: Management

Asymptomatic

- Follow serially with visits and echo
- Recommend repair/replacement if:
 - Clear sx develop
 - LV ejection fraction falls < 60%
Mitral Regurgitation: Management and Prevention

MR caused by LV dilation from poor LV:FXN

- Diuretics
- Vasodilators

Improves sx...

Symptomatic MR with preserved LV:

- Mitral repair or replacement before progressive LV dysfunction occurs
Schematic representation of mitral valve removed
Aortic Valve Disease
Lecture Outline

Aortic Stenosis
- Etiology
- Pathophysiology
- Clinical Features
- Diagnostic Testing
- Differential Diagnosis
- Management

Aortic Regurgitation
Aortic Stenosis: Pathology

Normal

Congenital

Acquired

Sources Undetermined
Aortic Stenosis

Pathophysiology
Aortic Stenosis: Pathophysiology

Measuring severity: valve area

- Severe $\leq 1.0 \text{ cm}^2$
- Moderate $1.0 - 1.4 \text{ cm}^2$
- Mild $> 1.5 \text{ cm}^2$
Left Ventricular Pressure Overload

- Gradient between LV and Aorta
- Global gene activation
- Concentric hypertrophy
Aortic Stenosis: Clinical Findings

- Dyspnea
- Angina pectoris
- Syncope
Aortic Stenosis: Clinical Findings

- Dyspnea
- Angina pectoris
- Syncope
Carotid Pulse

Normal

Parvus et tardus pulse
Aortic Stenosis

Laboratory Evaluation

- Chest radiology
- Electrocardiography
- Echocardiography
- Stress testing
- Catheterization
Aortic Stenosis: Chest radiology

Sources Undetermined
The Electrocardiogram
Echocardiography: Parasternal

Normal

Aortic Stenosis
Echocardiography: Short Axis

Normal:

Aortic Stenosis
Aortic Stenosis: Continuity Equation
Aortic Valve Stenosis: Echo Findings

Leaflet changes:
- ↑ Thickening
- ↑ Calcification
- ↓ Mobility

Ventricular changes:
- Left ventricular hypertrophy

Doppler changes:
- ↑ valve gradient / ↓ valve area
Aortic Stenosis

Laboratory Evaluation

- Chest radiology
- Electrocardiography
- Echocardiography
- Stress testing
- Catheterization
Aortic Stenosis: Differential Diagnosis

Any systolic murmur
Natural History of Aortic Stenosis

- Latent period (increasing obstruction, myocardial overload)
- Onset severe symptoms

% Survival vs. Age (years)

Average death
Age (♂)

Braunwald, Circulation, 1968
Schematic representation of pulmonary autograph removed
Aortic Stenosis: Management

• Young patient
 – Balloon valvotomy
 – Ross procedure

• Adults
 – Valve replacement
Cribier-Edwards Percutaneous Valve
Aortic Regurgitation
Aortic Regurgitation: Etiology

Abnormalities of valve leaflets

- Rheumatic
- Endocarditis
- Bicuspid valve

Dilatation of aortic root

- Aortic aneurysm/dissection
- Annulo-aortic ectasia
- Marfan syndrome
- Syphilis
Aortic Valve Regurgitation: Pathophysiology

Normal Valve Function:
- Total cusp area > aortic root area by 1.8 x
- Allows leaflets to overlap/abut
- Helps prevent prolapse in diastole

Impact of Diseases:
- Rheumatic: ↓Cusp area → central defect
- Endocarditis: Destroys cusp by tears
- Aortic root: Dilation → central defect
Aortic Valve Regurgitation: Pathophysiology

Dominant Hemodynamics: LV volume overload

- Critical determinant of severity - area of regurgitant orifice area
- End diastolic volume increases & stroke volume increases
- Dilation and hypertrophy of LV
- Diastolic burden reaches critical point → leading to heart failure
- Low diastolic blood pressure: incomp. valve and vasodilation
Aortic Valve Regurgitation: Pathophysiology - Acute vs. Chronic
Aortic Regurgitation: Clinical Features

- Long course
- Palpitations
- Dyspnea
- Fatigue
- Angina pectoris
The Arterial Pulse and Blood Pressures in Aortic Regurgitation

<table>
<thead>
<tr>
<th></th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood Pressure (mm/Hg)</td>
<td>132/76</td>
<td>144/67</td>
<td>152/58</td>
</tr>
</tbody>
</table>

M. Shea
Carotid Pulse

Hyperkinetic pulse
Aortic Valve Regurgitation: Physical Examination

• **LV apex impulse**: displaced laterally, downward, dynamic, enlarged

• **Systolic murmur**: may or may not imply valve stenosis…rapid ejection of stroke volume across aortic valve

• **Diastolic murmur**: decrescendo murmur; valvular AR - louder LUSB. Aortic root disease - louder RUSB
Aortic Regurgitation

Laboratory Evaluation

- Chest radiology
- Electrocardiography
- Echocardiography
- Exercise testing
- Cardiac catheterization
Aortic Regurgitation: Chest X-ray
The Electrocardiogram

[Diagram of electrocardiogram tracings from different leads: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6]
Aortic Regurgitation

Laboratory Evaluation

- Chest radiology
- Electrocardiography
- Echocardiography
- Exercise testing
- Cardiac catheterization
Aortic Regurgitation: Differential Diagnosis

- Mitral stenosis
- Pulmonic regurgitation
- Patent ductus arteriosus
Aortic Regurgitation
Management
Medical Therapy

- Noninvasive follow-up
Severe Aortic Regurgitation: The Asymptomatic Patient

Asymptomatic patients with normal LV function, %

- Sudden death
- Onset of symptoms
- Onset of asymptomatic left ventricular dysfunction

Time, y
Aortic Regurgitation: Management

Surgical Therapy

- Repair
 - Aortic valve
 - Replacement
- Aortic root replacement
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 14: Source Undetermined
Slide 17: Source Undetermined
Slide 18: Source Undetermined
Slide 19: Source Undetermined
Slide 21: Sources Undetermined
Slide 22: Sources Undetermined
Slide 28: Source Undetermined
Slide 29: Source Undetermined
Slide 33: Source Undetermined
Slide 37: Source Undetermined
Slide 39: Source Undetermined
Slide 40: Source Undetermined
Slide 41: Sources Undetermined
Slide 45: Sources Undetermined
Slide 47: Source Undetermined
Slide 49: Source Undetermined
Slide 50: Source Undetermined
Slide 57: Sources Undetermined
Slide 60: Source Undetermined
Slide 61: Source Undetermined
Slide 62: Michael Shea; Source Undetermined
Slide 63: Michael Shea; Source Undetermined
Slide 64: Source Undetermined
Slide 65: Source Undetermined
Slide 67: Sources Undetermined
Slide 68: Source Undetermined
Slide 69: Sources Undetermined
Slide 70: Sources Undetermined
Slide 71: Source Undetermined
Slide 74: Adapted by University of Michigan, Gray’s Anatomy, Wikimedia Commons, http://commons.wikimedia.org/wiki/File:Heart_and_lungs.jpg
Slide 75: Braunwald, Circulation, 1968
Slide 76: Source Undetermined