open.michigan

Author(s): David Ginsburg, M.D., 2012

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution–Non-commercial–Share Alike 3.0 License**: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about **how to cite** these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt				
{ Content the copyright holder, author, or law permits you to use, share and adapt. }				
PD-GOV	Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)			
Ø PD-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.			
Ø PD-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.			
(cc) ZERO	Creative Commons – Zero Waiver			
(cc) BY	Creative Commons – Attribution License			
CC) BY-SA	Creative Commons – Attribution Share Alike License			
CC BY-NC	Creative Commons – Attribution Noncommercial License			
CC) BY-NC-SA	Creative Commons – Attribution Noncommercial Share Alike License			
GNU-FDL	GNU – Free Documentation License			

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

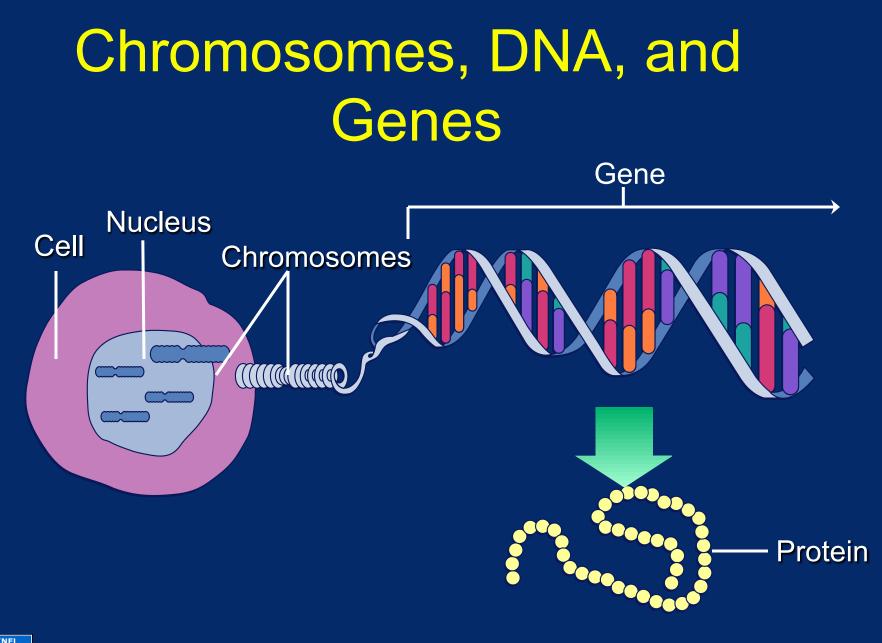
Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

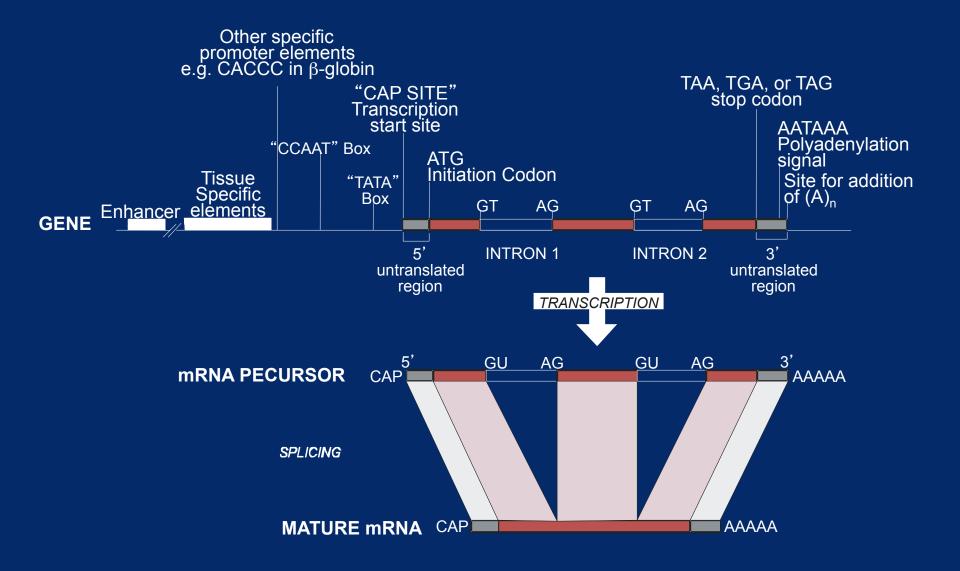
To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

DNA Sequence Variation M1 Patients and Populations David Ginsburg, MD

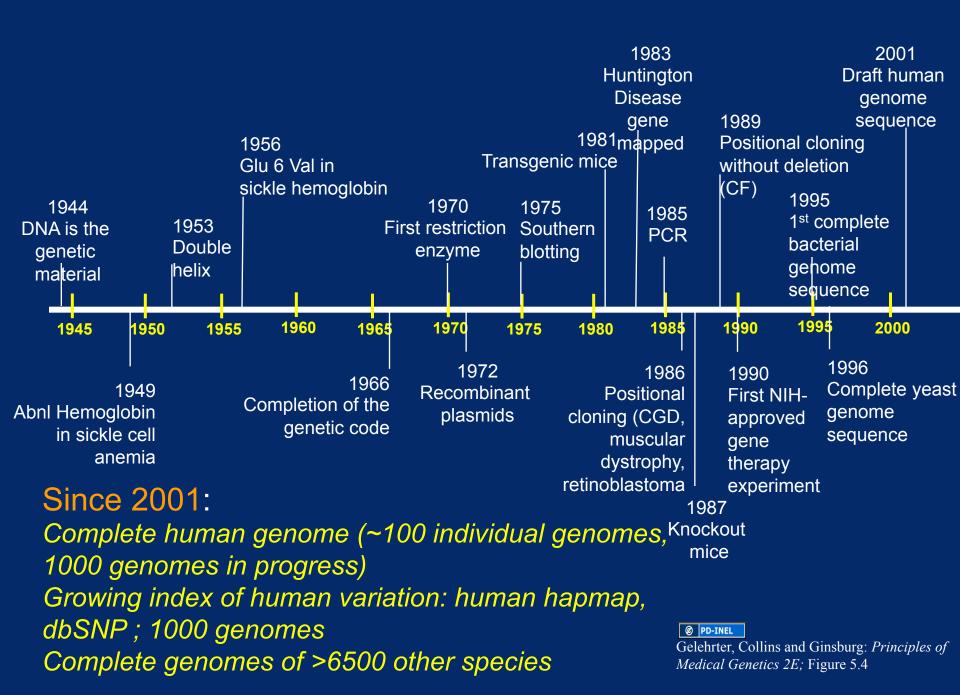
Relationships with Industry

UMMS faculty often interact with pharmaceutical, device, and biotechnology companies to improve patient care, and develop new therapies. UMMS faculty disclose these relationships in order to promote an ethical & transparent culture in research, clinical care, and teaching.


- •I am a member of the Board of Directors for Shire plc.
- •I am a member of the Scientific Advisory Boards for Portola Pharmaceuticals and Catalyst Biosciences.

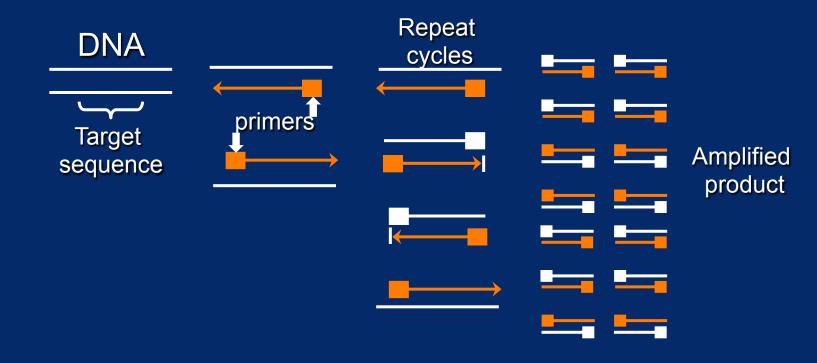

•I benefit from license/patent royalty payments to Boston Children's Hospital (VWF) and the University of Michigan (ADAMTS13).

Learning Objectives


- Understand the meaning of DNA sequence and amino acid polymorphisms.
- Recognize the different types of DNA sequence polymorphisms:
 - STR, SNP, CNV
- Know the different classes of DNA mutation:

 Point mutations (silent, missense, nonsense, frameshift, splicing, regulatory) insertion/deletions, rearrangements
- Understand how to distinguish a disease-causing mutation from a neutral DNA sequence variation


PD-INEL Gelehrter, Collins and Ginsburg: *Principles of Medical Genetics 2E;* Figure 5.1



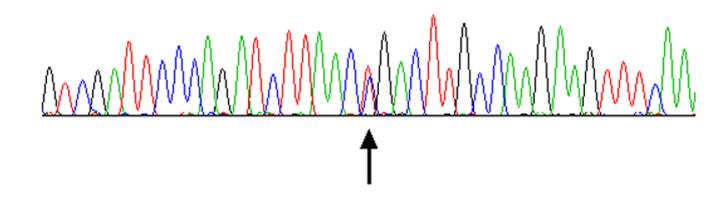
DNA Samples and PCR

cheek swab urine sample Forensic specimens

Blood sample

Hybridization array: gene chip

DNA chip v6.0: ~1 *million SNPs*


RNA expression: *All ~ 20,000 genes*

CGH:

Survey whole genome for large deletions, insertions, rearrangements Image of DNA sequencing process removed

DNA Sequencing

GTCGATTCCCAGATCTTAAC NGACTTGCCAAGAAGTTTCAA

New Sequencing Technologies

Company	Format	Read Length (bases)	Expected Throughput MB (million bases)/day
454 Life Sciences	Parallel bead array	100	96
Agencourt Bioscience	Sequencing by ligation	50	200
Applied Biosystems	Capillary electrophoresis	1000	3–4
Microchip Biotechnologies	Parallel bead array	850-1000	7
NimbleGen Systems	Map and survey microarray	30	100
Solexa	Parallel microchip	35	500
LI-COR	Electronic microchip	20,000	14,000
Network Biosystems	Biochip	800+	5
VisiGen Biotechnologies	Single molecule array	NA	1000

Generation next. Companies racing for the \$1000 genome sequence strive simultaneously for low cost, high accuracy, the ability to read long stretches of DNA, and high throughput.

Ø PD-INEL

Learning Objectives

- Understand the meaning of DNA sequence and amino acid polymorphisms.
- Recognize the different types of DNA sequence polymorphisms:
 STR, SNP, CNV
- Know the different classes of DNA mutation:

 Point mutations (silent, missense, nonsense, frameshift, splicing, regulatory) insertion/deletions, rearrangements
- Understand how to distinguish a disease-causing mutation from a neutral DNA sequence variation

DNA Sequence Variation

DNA Sequence Variation:

- Human to human: ~0.1% (1:1000 bp)
 - Human genome = 3X10⁹ bp X 0.1% =~3X10⁶ DNA common variants
- Human to chimp: ~1-2%
- More common in "junk" DNA: introns, intergenic regions

poly·mor·phism

Pronunciation: "päl-i-'mor-"fiz-&m

Function: noun

the quality or state of existing in or assuming different forms: as a (1):
existence of a species in several forms independent of the variations of sex
(2): existence of a gene in several allelic forms (3): existence of a molecule (as an enzyme) in several forms in a single species

Mutations

A mutation is a change in the "normal" base pair sequence

- Can be:
 - a single base pair substitution
 - a deletion or insertions of 1 or more base pairs (indel)
 - a larger deletion/insertion or rearrangement

Polymorphisms and Mutations

- - Genetic polymorphism: Common variation in the population:
 - Phenotype (eye color, height, etc)
 - genotype (DNA sequence polymorphism)
 Frequency of minor allele(s) > 1%
- DNA (and amino acid) sequence variation: Most common allele < 0.99 = polymorphism • (minor allele(s) \geq 1%) - Variant alleles < 0.01 = rare variant
- Mutation-- any change in DNA sequence Silent vs. amino acid substitution vs. other neutral vs. disease-causing 1X10⁻⁸/bp/generation (~70 new mutations/individual)
- balanced polymorphism= disease + polymorphism •
- Common but incorrect usage: "mutation vs. polymorphism" \mathbf{O}

All DNA sequence variation arises via mutation of an ancestral sequence

	< 1%	<u>></u> 1%
"Normal"	Rare variant or "private" polymorphism	polymorphism
"Disease"	Disease mutation	Example: Factor V Leiden (thrombosis) 5% allele frequency

Common but incorrect usage:

"a disease-causing mutation" OR "a polymorphism"

Learning Objectives

- Understand the meaning of DNA sequence and amino acid polymorphisms.
- Recognize the different types of DNA sequence polymorphisms:
 – STR, SNP, CNV
- Know the different classes of DNA mutation:

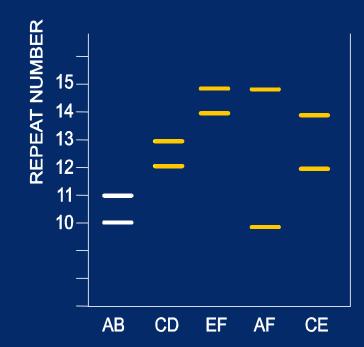
 Point mutations (silent, missense, nonsense, frameshift, splicing, regulatory) insertion/deletions, rearrangements
- Understand how to distinguish a disease-causing mutation from a neutral DNA sequence variation

Types of DNA Sequence Variation

- RFLP: <u>**R**</u>estriction <u>**F**</u>ragment <u>**L**</u>ength <u>**P**</u>olymorphism</u>
- VNTR: <u>Variable</u> <u>Number of</u> <u>Tandem</u> <u>Repeats</u>
 - or minisatellite
 - ~10-100 bp core unit
- SSR : <u>Simple</u> <u>Sequence</u> <u>Repeat</u>
 - or STR (simple tandem repeat)
 - or microsatellite
 - ~1-5 bp core unit
- SNP: <u>Single</u> <u>Nucleotide</u> <u>Polymorphism</u>
 - Commonly used to also include rare variants (SNVs)
- Insertions or deletions
 - INDEL small (few nucleotides) insertion or deletion
- Rearrangement (inversion, duplication, complex rearrangement)
 - CNV: <u>C</u>opy <u>N</u>umber <u>V</u>ariation

STR ← A P1 (TCTA)10 (TCTA)11 (TCTA)12 (TCTA)13 (TCTA)14

(TCTA)15


В

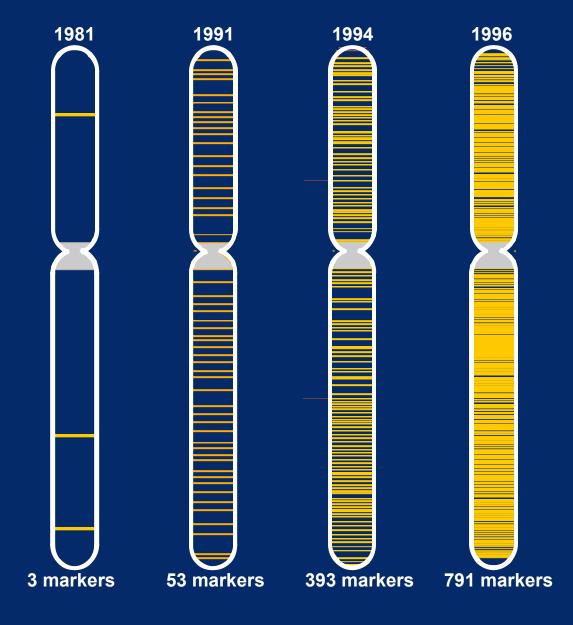
С

D

Ε

F

Ø PD-INEL Gelehrter, Collins and Ginsburg: *Principles of Medical Genetics 2E;* Figure 5.22



AŬGAAGŬŬŬGGĊGĊAŬŬGĊAA Allele 1 Allele 2

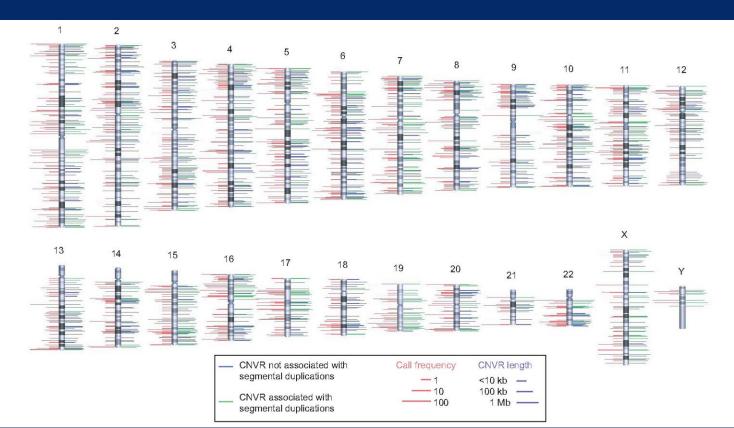
- Most are "silent"
- Intragenic
- Promoters and other regulatory sequences
- Introns
- Exons •

 - 5' and 3' untranslated regions
 Coding sequence (~1-2% of genome)

Human Chromosome 4

2010

 23,653,737 total human entries in dbSNP
 <u>http://</u>

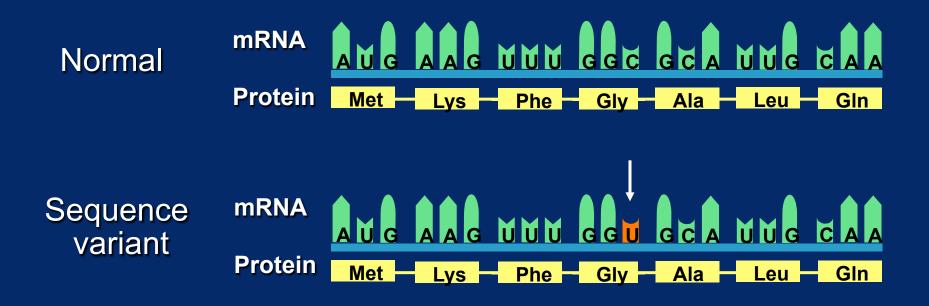

www.ncbi.nlm.nih.go v/projects/SNP/

- Chromosome 4

 4,311,728 SNPs
- ~1M SNP chip commercially available

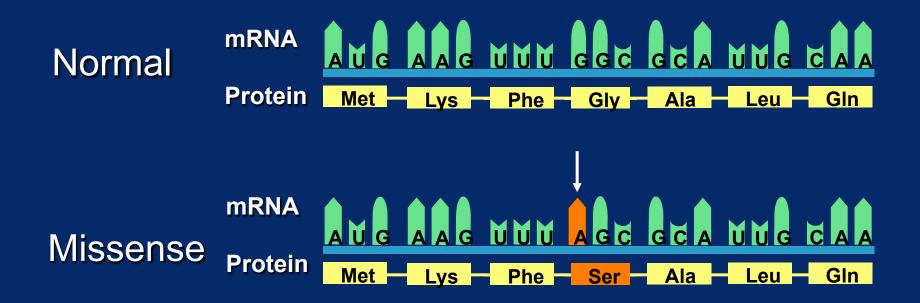
Copy Number Variation (CNV)

- Kb to Mb in size (average ~250 Kb)
- >>2000 known, affect ~12% of human genome
- ?~100 / person
- ? Role in human disease/normal traits

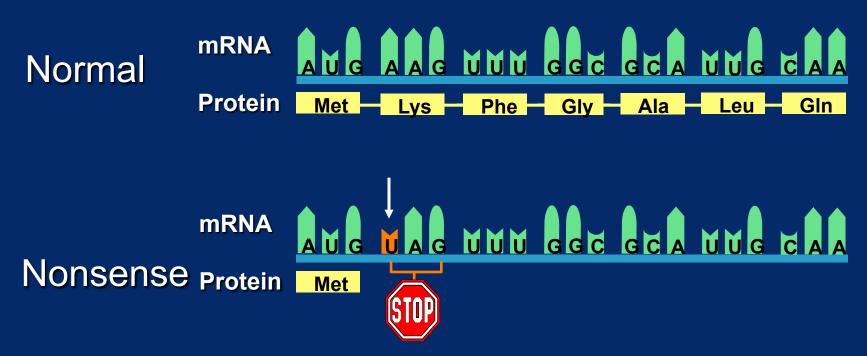


Learning Objectives

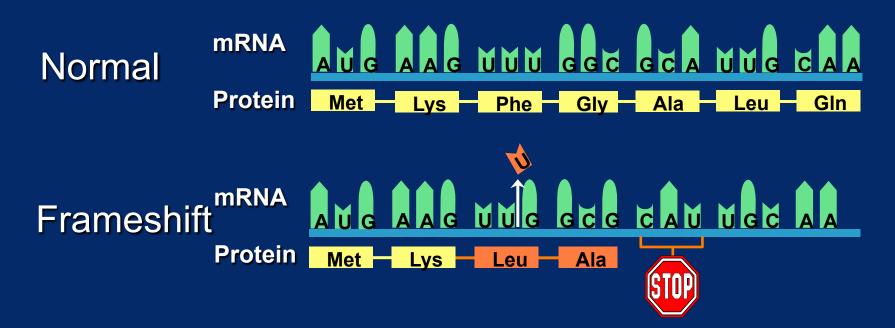
- Understand the meaning of DNA sequence and amino acid polymorphisms.
- Recognize the different types of DNA sequence polymorphisms:
 <u>STR</u>, SNP, CNV
- Know the different classes of DNA mutation:


 Point mutations (silent, missense, nonsense, frameshift, splicing, regulatory) insertion/deletions, rearrangements
- Understand how to distinguish a disease-causing mutation from a neutral DNA sequence variation

Silent Sequence Change (Synonymous SNP)

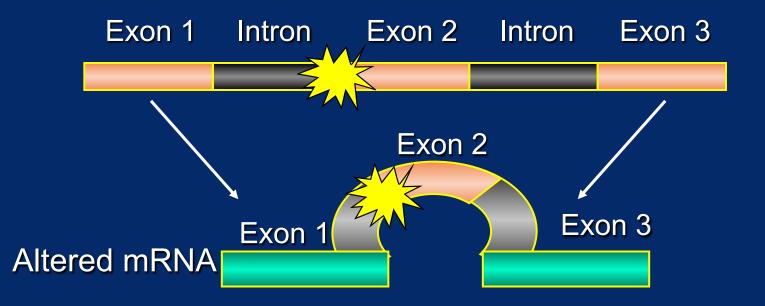

Changes that do not alter the encoded amino acid

Missense Mutation (Nonynonymous SNP)


Missense: changes to a codon for another amino acid (can be harmful mutation or neutral variant)

Nonsense Mutation (Nonynonymous SNP)

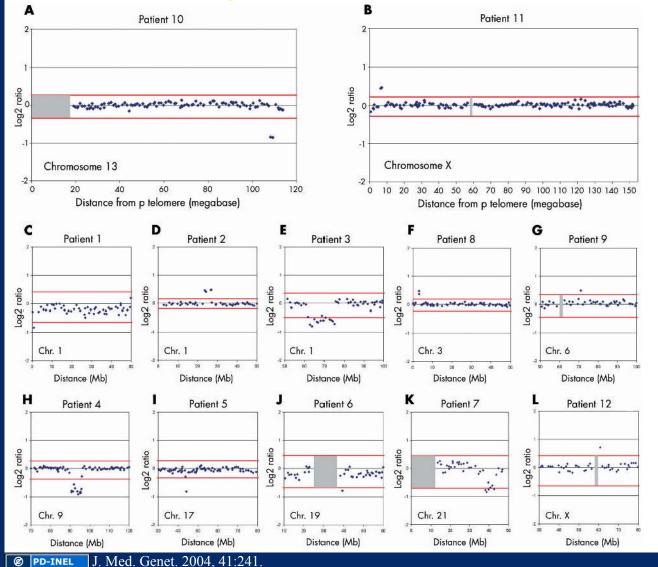
Nonsense: change from an amino acid codon to a stop codon, producing a shortened protein


Frameshift Mutations

Frameshift: insertion or deletion of base pairs, producing a stop codon downstream and (usually) shortened protein

© PD-INELAdapted from ASCO teaching slides

Splice-site Mutations



Splice-site mutation: a change that results in altered RNA sequence

Other Types of Mutations

- Mutations in regulatory regions of the gene
- Large deletions or insertions
- Chromosomal translocations or inversions

Potentially pathogenic CNV detected in ~10-20% of unexplained intellectual disability

Learning Objectives

- Understand the meaning of DNA sequence and amino acid polymorphisms.
- Recognize the different types of DNA sequence polymorphisms:
 STR, SNP, CNV
- Know the different classes of DNA mutation:

 Point mutations (silent, missense, nonsense, frameshift, splicing, regulatory) insertion/deletions, rearrangements
- Understand how to distinguish a disease-causing mutation from a neutral DNA sequence variation

Tests to Detect Mutations

- Many methods/technologies
- Rapidly changing
- DNA sequencing
 - Most direct and informative
 - The gold standard
 - Targeted region (known mutation)
 - "Whole" gene (unknown mutation)
 - ... Whole exome / whole genome

How do we distinguish a disease causing mutation from a silent sequence variation?

- Obvious disruption of gene
 - large deletion or rearrangement
 - frameshift
 - nonsense mutation
- Functional analysis of gene product
 - expression of recombinant protein
 - transgenic mice
- New mutation by phenotype and genotype
- Computer predictions
- Disease-specific mutation databases
 - Same/similar mutation in other patients, not in controls

X

 Rare disease-causing mutation vs. private "polymorphism" (rare variant)

Learning Objectives

- Understand the meaning of DNA sequence and amino acid polymorphisms.
- Recognize the different types of DNA sequence polymorphisms:
 - STR, SNP, CNV
- Know the different classes of DNA mutation:

 Point mutations (silent, missense, nonsense, frameshift, splicing, regulatory) insertion/deletions, rearrangements
- Understand how to distinguish a disease-causing mutation from a neutral DNA sequence variation

Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 10: CC: BY-SA: Ricardipus (wikipedia) http://creativecommons.org/licenses/by-sa/2.0/deed.en