open.michigan

Author(s): David Ginsburg, M.D., 2012

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution–Non-commercial–Share Alike 3.0 License**: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about **how to cite** these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share	+ Adapt
{ Content th	e copyright holder, author, or law permits you to use, share and adapt. }
PD-GOV	Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)
Ø PD-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
Ø PD-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
(cc) ZERO	Creative Commons – Zero Waiver
(cc) BY	Creative Commons – Attribution License
CC BY-SA	Creative Commons – Attribution Share Alike License
CC BY-NC	Creative Commons – Attribution Noncommercial License
CC BY-NC-SA	Creative Commons – Attribution Noncommercial Share Alike License
③ GNU-FDL	GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

Hemoglobinopathies

David Ginsburg, MD

Reading: *Principles of Medical Genetics 2E* Chapter 6

Relationships with Industry

UMMS faculty often interact with pharmaceutical, device, and biotechnology companies to improve patient care, and develop new therapies. UMMS faculty disclose these relationships in order to promote an ethical & transparent culture in research, clinical care, and teaching.

- •I am a member of the Board of Directors for Shire plc.
- •I am a member of the Scientific Advisory Boards for Portola Pharmaceuticals and Catalyst Biosciences.

•I benefit from license/patent royalty payments to Boston Children's Hospital (VWF) and the University of Michigan (ADAMTS13).

Learning Objectives

- Understand how the basic anatomy of a gene has a direct bearing on the occurrence of genetic disease.
- Know the normal and abnormal *expression patterns* of the hemoglobin genes.
- Understand the mutations that cause *quantitative* abnormalities in globin.
 - Unequal crossing over, and every other possible type of mutation
- Recognize mutations that cause *qualitative* abnormalities in globin.
- Understand the *molecular basis of sickle cell anemia*.

© PD-INEL Gelehrter, Collins and Ginsburg: *Principles of Medical Genetics 2E;* Figure 5.2

Ø PD-INEL

CHROMOSOME 11

PD-INEL NF Olivieri, **NEJM 341**:99, 1999. (or *Principles of Medical Genetics*: Figure 6.2)

Quantitative Abnormalities of Hemoglobin

- α Thalassemia
 deficiency of α globin chains
- β Thalassemia
 - deficiency of β globin chains
- HPFH
 - Hereditary persistence of fetal hemoglobin

B-THAL NORMAL α -THAL αβ βα αβ βα $\alpha \alpha$ β α αα αβ Βα TETRAMERS 9 d. ß d.d. 30 **RBCs** PRECIPITATION INCLUSION BODIES OF β_4 (HbH) OF Q4 (VERY INSOLUBLE) DESTRUCTION OF RBCs IN MARROW, SPLEEN

PD-INEL DHK Chui & JS Waye, **Blood 91**:2213, 1998.

Mutant Class	Origin	Reference
I. Nonfunctional mRNA		
a. Nonsense mutants:		
1) codon 116 (G-T)	Black	86
b. Frameshift mutants:		
1) codon 30/31		
(-4nts)	Black	65
c. Initiator codon mu-		
tants:		
2) ATG-ACG	Maditerranean	110
3) CCCACCATG	mounterranean	110
CCCCATG	Maditarranan	000
A) ATC GTC	Mediterranean Disel	90a
47 410-010	mediterranan, black	90, 96
d.Terminator codon mu-		
tants		
5) α^{CS} of HB Constant		
Spring (TAA-CAA)	Black	30
6) α^{KD} of Koya Dora		
(TAA-TCA)	Indian	34
 ^{iC} of Hb Icaria 		
(TAA-AAA)	Mediterranean	29
 α⁵⁸ of Hb Seal 		
Rock (TAA-GAA)	Black	15
II. KNA Processing mutants		
a. Splice junction		
changes:		
1) IVS-1 donor site		
(GGTGAGGCT-	1992	
GGCT)	Mediterranean	100a
b. RNA cleavage and		
polyandenylation site		
1) AATAAA-AATAAG	Arab	64
II. Unstable globins		
1) α ^{Ouong Sat} (codon		
125 Leu-Pro)	SE Asian	59
2) a ^{Suan Dok} (codon		18
209, Leu-Arg)	SE Asian	129
3) afresh Tawah (codon		N. C. S.
110, Ala-Aso)	Middle East	65
4) afvaration (codon 14		
Tro-Ara)	Black	68

Ø PD-INEL

Principles of Medical Genetics: : Fig. 6.15

Normal peripheral blood smear

Hgb H disease

Image removed. See Miller LH. *Nature*, **383**:480, 1996.

PHENOTYPE	β- GENE GENOTYPE
	\rightarrow
THALASSEMIA	
ASYMPTOMATIC HETEROZYGOTE	
	, p HETEHOLIGOTE
THALASSEMIA	
SYMPTOMATIC,	TWO MILD ALLELES
REQUIRING TRANSFUSION	
	ONE VERY MILD ALLEL
	- CONCURRENT α-THA OR HPFH
	1
THALASSEMIA	B ⁰ -THALASSEMIA
, TRANSFUSION DEPENDENT	OR
	C
	B*-THALASSEMIA

© PD-INEL Gelehrter, Collins and Ginsburg: *Principles of Medical Genetics 2E;* Figure 6.19

Principles of Medical Genetics: Figure 6.21

MECHANISM

NORMAL & GLOBIN	Gly	Gly	Glu	Ala	
NORMAL GENE	GGT	GGT	GAG	GCC	
CODON NUMBER	24	25	26	27	
β ^E GENE	ĢGT	GGT	AAG	GCC	
β ^E GLOBIN	Gly	Gly	Lys	Ala	
"CONSENSUS" DONOR SIGNAL	C A A	GGT	A A G G	T	

0.1.1

CONSEQUENCE

PD-INEL Gelehrter, Collins and Ginsburg: *Principles of Medical Genetics 2E;* Figure 6.18

Normal peripheral blood smear

β-Thalassemia (homozygous)

Ø PD-INEL

© PD-INEL Gelehrter, Collins and Ginsburg: *Principles of Medical Genetics 2E;* Figure 6.25

Fig 8. Change in birth rate of thalassemic children in four countries after the introduction of preventive programs. Adapted with permission.^{55,66}

Qualitative Abnormalities of Hemoglobin

- Silent Variants
- Unstable hemoglobins

 Heinz body hemolytic anemia
- Methemoglobinemia
- High affinity hemoglobins
 - polycythemia (*thematocrit* and *hemoglobin*)
- Low affinity hemoglobins
 - mild anemia (thematocrit and hemoglobin)
- Hemoglobin S
- Hemoglobin C

		DNA		
	codon 5	6	7	
βA	ССТ	GAG	GAG	
βS	ССТ	GIG	GAG	
β ^C	CCT	AAG	GAG	
		PROTEIN		
	5	6	7	
βA	Pro	Glu	Glu	
β ^S	Pro	Val	Glu	
β ^C	Pro	Lys	Glu	
		1.2.		-
PD-INEL (ielehrter, Colli Andical Canati	ns and Gins	burg: Principle	rs of

340:1021, 1999.

© PD-INEL Gelehrter, Collins and Ginsburg: *Principles of Medical Genetics 2E;* Figure 6.8

Hemoglobin SS Disease

Complications of Sickle Cell Anemia

- autosplenectomy
- hyposthenuria
- Infections
 - encapsulated organisms-- pneumococcus
 - salmonella, staph
- Painful crises
- Bone infarcts, aseptic necrosis
- Stroke
- Acute chest syndrome
- Hand-foot syndrome
- Chronic organ damage

Table 10–11. FREQUENCY OF HEMOGLOBIN GENOTYPES AMONG BLACK AMERICANS

	Percentage of Population		
Genotype	*	**	
AS	8.6	8.0	
SS	0.14	0.16	
AC	2.4	3.0	
CC	0.02	0.02	
SC	0.13	0.12	

*Survey of 250,000 black Americans⁵⁵⁶ **Review of literature⁵⁵⁷

Ø PD-INEL

PD-INEL NF Olivieri, **NEJM 341**:99, 1999. (or *Principles of Medical Genetics*: Figure 6.2)

Hb S only occurs on 4 haplotypes...only occurred 4 times in history

© PD-INEL Gelehrter, Collins and Ginsburg: *Principles of Medical Genetics 2E;* Figure 4.2

Hb S is a balanced polymorphism

- * homozygotes (1 in 500) are selected against
- * heterozygotes (1 in 12) are selected for

Sickle Cell Anemia: Treatment

- IV fluids
- Analgesia
- Infection
 - penicillin prophylaxis
 - vaccines
- Oxygen
- Transfusion
- Erythropoietin
- Hydroxyurea
- Bone Marrow Transplantation

Learning Objectives

- Understand how the basic anatomy of a gene has a direct bearing on the occurrence of genetic disease.
- Know the normal and abnormal *expression patterns* of the hemoglobin genes.
- Understand the mutations that cause *quantitative* abnormalities in globin.
 - Unequal crossing over, and every other possible type of mutation
- Recognize mutations that cause *qualitative* abnormalities in globin.
- Understand the *molecular basis of sickle cell anemia*.