Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Sepsis

John G. Younger, MD
Associate Professor
Department of Emergency Medicine
Overview of the Lecture

• Definition and epidemiology of sepsis
• An introduction to pathophysiology
• Diagnosis
• Treatment
A Basic Scientist’s Definition of Sepsis

A systemic response, and often a disproportionately severe one, to a poorly-controlled infection. Key features include:

– Unregulated activation the clotting and complement cascades

– Corresponding inappropriate activation of professional phagocytes (neutrophils and macrophages) and mast cells

– Global damage to endothelium, with increased permeability

– Microvascular smooth muscle failure with vasodilatation and loss of local blood flow regulation

– Organ dysfunction including but not limited to the heart, liver, gut, kidneys, and CNS, but especially the lung.
A Clinician’s Definition of Sepsis

Clinically, sepsis is an illness that is characterized by:

1. The presence (or suspected presence) of an infection

2. Signs of a strong host response or, occasionally, a tepid host response when a strong one is called for

3. Hypotension

4. Signs and symptoms of poor perfusion
 - Cool, sometimes mottled, extremities
 - Oliguria
 - Confusion
An Epidemiologist’s Definition of Sepsis

• **Systemic Inflammatory Response Syndrome**
 – Temperature: $< 36^0$ or $> 38^0$
 – Heart Rate: > 90 beats per minute
 – Tachypnea: 20 breaths per minute or pCO$_2$ < 32 mmHg
 – WBC count: < 4000 /mm3 or $> 12,000$ /mm3

• **Sepsis**
 – Two or more SIRS + an infectious source

• **Severe Sepsis**
 – Sepsis with signs of failure in at least one organ system

• **Septic Shock**
 – Sepsis with shock / hypoperfusion despite fluid resuscitation

• **Note:** Definitions vary for children and neonates
The Problem with These Definitions:
Most People in this Room Have Been Septic
Epidemiology of Severe Sepsis

• Incidence in the United States is around 750,000 cases annually

• About 500,000 of cases are cared for initially in emergency departments

• The rest usually find themselves in ICUs following hospital admissions for other reasons

• About 215,000 cases (29%) are fatal each year
 – 2-3 fully loaded 727’s crashing into the ground each day
 – Compare to COPD, with ~ 127,000 deaths annually

• Roughly 9% of deaths in the United States
Incidence and Mortality of Sepsis, By Age

Angus, et al. CCM 2001
Sepsis Source among Patients Cared for in the ICU

- Respiratory
- Genitourinary
- Bacteremia
- Abdominal
- Wounds
- Device
- Other

Angus, et al. CCM 2001
Pathogenesis

- Sepsis is the result of inappropriate and global activation or deactivation of innate immune, inflammatory, thrombotic, and metabolic pathways.

- Key culprits include:
 - Toll-like receptors and the NF-κB signaling pathway
 - Complement
 - Tissue factor (procoagulant)
 - Plasminogen Activator Inhibitor-1 (PAI-1, which prevents thrombolysis)
 - Endothelial nitric oxide
 - Lipid and carbohydrate metabolism (e.g., pyruvate dehydrogenase)
 - Apoptosis
Toll-Like Receptors and NF-κB
Low-dose intravenous (experimental) LPS exposure in humans produces tremendous effects:

- > 1,200 genes perturbed in WBCs
- Key loci included:
 - Cytokines, chemokines, and their receptors
 - Complement proteins and receptors
 - Mitochondrial respiratory chain proteins
 - Proteasome elements
Lymphocyte Apoptosis: Another Key Pathogenic Feature in Sepsis

Hotchkiss, J Immunol, 2001
In What Context are All of These Responses Intended?

• Long-distance signals
 – IL-1 (to the hypothalamus for thermogenesis)
 – Colony Stimulating Factors (to the marrow for increased leukocyte production)
 – To the pulmonary vascular bed (for neutrophil demargination)

• Short-distance signals
 – Chemoattractants (e.g., C5a)
 – Phagocyte activators

• A key part of the pathogenesis of sepsis is the ‘nonsensical’ systemic availability of signals meant for local communication only
 – Proinflammatory signal may overcome antiinflammatory regulatory mechanisms
The Septic Trajectory

• Early, uncontained proinflammatory response
 – Local response gets out of the barn
 – Other organs susceptible to damage as innocent bystanders

• Late, immunocompromised phase
 – Proinflammatory initiation gives way to impaired host defense networks
 – Ability to handle infection lessens over the course of the illness
 – Secondary infections are common

• Resolution
 – In survivors, normal host response may take months to recover
Key Clinical Features of Sepsis: Hypotension

• Initially produced by C3a and C5a, leukotrienes, and histamine by way of mast cell degranulation

• Once the illness is firmly established, widespread inappropriate production of inducible nitric oxide synthase (iNOS) causes persistent vasodilation

• Both mechanisms lead to increased intravascular volume and relative hypovolemia
Key Clinical Features of Sepsis: Hypotension

- Endothelial injury and histamine release result in loss of capillary integrity.

- Remember: Starling’s Law

\[Q = L_p S \left[(P_C - P_{IF}) - \sigma (\pi_C - \pi_{IF}) \right] \]

- Widespread edema can result once aggressive fluid resuscitation begins.
Key Clinical Features of Sepsis: Hypotension

- Hypotension is more than just vasodilatation.

- Local blood flow is dysregulated
 - Some areas that need it don’t get it
 - Some areas get too much

- Evidence of organ ischemia can be widespread
 - Elevated liver enzymes
 - Elevated creatinine
 - Elevated troponin
The Lung as a Target in Sepsis

A sitting duck

– The only organ that sees the entire cardiac output and then some
 • Pulmonary arterial flow
 • Bronchial flow

– The lung is the first tissue bed to see all of the mediators that are washing out of a infectious focus somewhere out in the periphery

– The lung has to filter infectious debris (bacteria, biofilms, etc.) dropping into the blood stream from infected devices

– The lung’s function is exquisitely sensitive to capillary leak
Organs Injured as Innocent Bystanders
Acute Lung Injury

The differential diagnosis for this x-ray includes illnesses far removed from the lung
- Infections such as pyelonephritis
- Ischemic injury to the gut or an extremity
- Hemorrhagic shock
- The list goes on
Other Organs That Take a Hit

The Gut

- Increased permeability may worsen problems by allowing gut flora into the portal vein
- Edema and ischemia lead to loss of villi and poor adsorption
- Mediators released by the gut hit the liver, then the lung

Other Organs That Take a Hit

The Kidney

- Acute renal failure
- Injury mechanisms similar to other organs – ischemia + circulating mediators
- Pyelonephritis is a frequency underlying cause of sepsis
- Mortality of sepsis + acute renal failure is very high (up to 75%

Other Organs that Take a Hit

• The Heart
 – Tissue edema
 – Microvascular thrombosis
 – Decreased contractility
 – Decreased compliance

• The Liver
 – Diminished synthetic function
 – Diminished clearance of systemically generated lactate
 – Injured Kupffer cells contribute to general pro-inflammatory state
 – Decreased clearance of occasional microorganisms from the portal circulation
The Net Impact on DO$_2$

- Pulmonary edema leads to VQ mismatch and hypoxia
- Decreased cardiac contractility leads to diminished cardiac output
- Peripheral vasodilatation leads to hypovolemia and diminished cardiac output
- ‘Hypermetabolic state’ in the periphery reduces venous pO$_2$ and content, stressing the ability of remaining functioning lung to oxygenate blood
- In short, DO$_2$ goes down.
To Make Matters Worse

• Oxygen consumption is abnormal
 – Tissue edema increases the diffusion path from capillaries to mitochondria
 – Local microthrombosis reduce the number of capillaries participating in blood flow to any particular organ
 – Increased levels of nitric oxide (from iNOS) directly poison cytochrome C oxidase on the inner mitochondrial membrane

• The net result is poor oxygen utilization even in areas where delivery may be intact

• These abnormalities limit the effectiveness of resuscitation aimed at restoring DO_2
Therapeutic Basics

Reliable identification of cases early in their course

- Easier said than done
- Entry points (clinics, hospitals) are busier than ever, wait times are long
- Some patients are sicker than ever, some are less sick than ever
- In-patients can go several hours between visits by nursing or physician staff (think nights, weekends)

- Early findings are hard to distinguish from a lot of other problems
- In elderly patients, the findings can be very subtle and masked by underlying illnesses

- Screening methods suffer from low specificity – capturing ‘all cases’ results in capturing a bunch of folks as well who are not septic
Therapeutic Basics

Reliable identification of cases early in their course

- **Laboratory Tests:**
 - WBC (it’s one of the SIRS criteria)
 - Measures of other organ function (SaO2, liver function tests, renal function tests)
 - Measures of disordered coagulation (PT, aPTT, fibrinogen, D-dimer, etc.)

 - Blood lactic acid levels
 - In and out of vogue over the past 40 years.
 - Back in fashion now
 - A marker of anaerobic metabolism
 - Few false positives (exercise, grand mal seizures – these are usually not confused with sepsis)

- **Other markers not very useful**
 - Inflammatory markers
 » E.g., TNF, IL-6 much more reflective in the lab than in clinical application
Therapeutic Basics

• Correct Hypoperfusion
 – Volume resuscitation
 – Packed red cells
 – Pressors and Inotropes

• Antibiotics

• Lung support

• Specific Therapy
Therapeutic Basics

Before you get started, how should you monitor the success of your early resuscitation:

- Arterial blood pressure -> an arterial catheter is reasonable
- Central venous pressure -> many treatment algorithms require one
- Urine output
- Arterial oxygen saturation
- Central or mixed venous oxygen saturation
- Serial lactate measurements
Therapeutic Basics: An Organized Approach to Resuscitation
Therapeutic Basics

Correction of Abnormal DO$_2$ Step 1: Volume Resuscitation

- Intravenous Fluids

 - Normal saline or lactated Ringers frequently used (LR typically a surgical intervention)
 - In a critically ill adult, several liters of IVF are commonly required
 - Downside is that patients with a pre-existing leaky microvasculature will not keep this fluid in their circulation for more than a few hours
 - Pulmonary edema as part of volume resuscitation is not uncommon and often contributes to the need to initiate mechanical ventilation
 - Most protocols base volume resuscitation on central venous pressure measurements
Correction of Abnormal DO$_2$ Step 2: Correction of Oxygen Carrying Capacity

– Transfusion

• More controversial than intravenous fluids
• Many published guidelines suggest keeping Hct > 30 %
• Upside is that transfused red cells are a nice intravascular volume expander and tend to stay in the blood stream for much longer than IV fluids
• Down sides include cost, availability, possibility of transfusion reactions
• Concerns about blood product transmission of things like Hepatitis C are really misplaced in this setting – the mortality of the acute illness wildly out-strips the risk of communicable diseases in the blood supply
Correction of Abnormal DO_2 Step 3: Maximizing blood flow

- Volume resuscitation often corrects much of the problem with hypotension

- Vasopressors and inotropes can be added to improve blood pressure and venous oxygen saturations once volume has been replaced
Therapeutic Basics

Early, appropriate antibiotics are *key*

- Unless a specific site of infection, and a specific organism, are known, initial approach is very broad spectrum.

- Gram\(^+\) and Gram\(^-\) organisms should be covered, and antibiotic resistance to standard agents should be assumed until proven otherwise.

Kumar, CCM 2006
Therapeutic Basics

Respiratory Support

- Supplemental oxygen to overcome gas exchange abnormalities. Goal is hemoglobin saturation as close to 100% as possible

- Readiness to intubate and mechanically ventilate
 - Improves gas exchange
 - Importantly, removes work of breathing from the patient’s metabolic ‘to do list’
 - This can be substantial – 25-30% of metabolic demands commonly
Specific Therapy

- Despite so much being known about the biochemistry of sepsis, there’s only one agent that’s been shown to be of clear benefit

 - Activated protein C

 - Acts by degrading factor Va and factor VIIIa

 - *Anticoagulant and antiinflammatory*

 - Marketed as Drotecogin alfa (Xigris)

 - Best results so far: ~ 5-6% reduction

 - Expensive: $8,000 per patient

Source Undetermined
Longer Term Management of Sepsis

Key Goals

- Minimize ongoing damage from the inciting event
- Support respiratory function until recovery
- Do no harm in supporting respiratory function
- Support failed organ systems until function returns
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 8: Source Undetermined
Slide 10: Angus, et al. CCM 2001
Slide 14: Nature Review
Slide 15: Calvano, Nature, 2005
Slide 16: Hotchkiss, J Immunol, 2001
Slide 21: Source Undetermined
Slide 23: Source Undetermined
Slide 24: Source Undetermined
Slide 34: Source Undetermined
Slide 38: Kumar, CCM 2006
Slide 40: Source Undetermined