Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
- Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
- Creative Commons – Zero Waiver
- Creative Commons – Attribution License
- Creative Commons – Attribution Share Alike License
- Creative Commons – Attribution Noncommercial License
- Creative Commons – Attribution Noncommercial Share Alike License
- GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b))
 *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Acute Renal Failure/Acute Kidney Injury

Increase of BUN and/or creatinine of recent, abrupt onset reflecting a sudden loss of net, effective clearance capacity of the kidney.

Urine output can vary. Oliguria refers to < 400 cc./day; many forms are “non-oliguric.”
Acute renal failure

- Prerenal causes
 - Vascular disorders
- Renal causes
 - Glomerulonephritis
 - Interstitial nephritis
- Postrenal causes
 - Tubular necrosis
 - Ischemia
 - Toxins
 - Pigments
50-75% of inpatient general nephrology activities relate to the diagnosis and management of acute renal failure secondary to renal ischemia, drugs and diagnostic tests, and other toxins.
Incidence of ARF (any ARF)

- 1-2% of all hospital admissions
- 20-30% of Post-operative cases
- 10-25% of ICU admissions
- 20-30% of Acute sepsis
- Up to 40% in Hematologic malignancy
- The kidney fails when other organs fail . . .

Impact of ARF

• ARF (any) increases hospital mortality x 5
 Levy et al, JAMA 1996

• ARF needing RRT carries 45-65% mortality
 somewhat better survival over last 5-10 yr

• ARF in “critically ill” - 27% 6 mo survival
 Adj-life-yr cost: $274K/yr in worst cases
 $ 62K/yr in best cases
 Hamel et al, Ann Int Med 1996
16,000 patients undergoing contrast procedure.
183 developed ARF
34% mortality compared to 7% without ARF matched for age, baseline creatinine, and contrast procedure.
After comorbidity adjustment, odds ratio of dying after ARF was 5.5.

Levy et al. JAMA 275: 1489, 1996
Mechanisms of Acute Renal Failure and Approach to the Patient

Illustrative Case

A 73 year old man develops severe abdominal pain radiating to the back and collapses at home. In the emergency room a blood pressure of 80 and an acute abdomen are present. At laparotomy, a ruptured, infrarenal abdominal aortic aneurysm is found and repaired during an 8 hour procedure in which 40 units of red blood cells and fresh frozen plasma are used. Postoperatively, the patient is putting out less than 200 cc urine/day and creatinine increases between 1 and 1.5 units daily until dialysis is started. Three weeks later, progressive increases in urine volume are noted along with smaller increases of creatinine between dialysis treatments. During the next week, sufficient renal function returns to discontinue dialysis and the patient ultimately leaves the hospital with a serum creatinine of 1.8 (as compared to 1.2 before this illness).
Mechanisms of Acute Renal Failure

Objectives

1. Appreciate why the kidney is susceptible to diverse insults resulting in acute renal failure.

2. Understand the contributions of the major relevant cell types in the vascular and tubular compartments.

3. Understand how the vascular and tubular events combine to produce whole organ dysfunction.

4. Be aware of the processes required for recovery and the time frame over which they occur.
Why are cells in the kidney particularly susceptible to diverse insults?

- High rates of oxidative metabolism

- Marginal oxygenation relative to work demands and complex microcirculation highly susceptible to inflammatory factors

- Reabsorptive functions and resulting urinary concentration expose both exterior and interior of cells to high levels of solutes.

- Metabolic transformation leading to toxic activation
Figure 2-8. The relation between renal oxygen consumption and sodium reabsorption in the dog kidney. Redrawn from Thurau, as shown in reference 31.
Fig. 1. Distribution of glycolytic and gluconeogenic enzymes along the rat nephron. Nephron segments were dissected from fed (A) and starved (B) rats, respectively. The activity of hexokinase (E.C. 2.7.1.1) [7], phosphofructokinase (E.C. 2.7.1.11) [8], pyruvate kinase (E.C. 2.7.1.40) [9], glucose-6-phosphatase (E.C. 3.1.3.9) [15], fructose-1,6-bisphosphatase (E.C. 3.1.2.13) [15, 16], and phosphoenolpyruvate carboxykinase (E.C. 4.1.1.32) [15, 17] were determined in individual segments. Enzyme activities are expressed as percent of the maximal value observed, based on the original activity per grain of dry weight. For methodological details and absolute activities the reader is referred to the references cited.

The abbreviations of nephron segments used are: GL, glomerulus; PCT₁, early proximal convoluted tubule; PCT₂, late proximal convoluted tubule; PST, proximal straight tubule; TL, loop of Henle, thin limbs; MAL, medullary thick ascending limb; CAL, cortical ascending limb; DCT, distal convoluted tubule; CCT, cortical collecting tubule; MCT, medullary collecting tubule.
Fig. 2. Effect of ischemia on ATP levels in 6 parts of the nephron and in the papilla. Concentrations are mmol·kg⁻¹ (dry wt). Except as indicated, each value is the average for 3 to 8 kidneys. The 7.5 and 45 sec values are the averages of data for 5 and 10 sec, and 30 and 60 sec periods of ischemia respectively. Symbols are: (▲) DCT, (□) TAL, (■) PAP, (○) glom, (●) PST, and (×) PCT.

Toxicant → Biotransformation
- High-affinity binding to macromolecules
- Reactive intermediate
 - Covalent binding to macromolecules
 - Damage to critical macromolecules
 - Cell injury → Cell repair, Cell death
 - Increased reactive oxygen species
 - Oxidative damage to critical macromolecules
Schrier, Diseases of the Kidney
Membrane Phospholipids

Phospholipase A₂

Arachidonic Acid

Cyclooxygenase

Endoperoxides

Prostaglandins (D₂, E₂, F₂₀)

Thromboxane A₂

Prostacyclin (PGL₂)

Cytochrome P450 Monooxygenases

HETEs

EETs

DIHETEs

Lipoxygenases

HPETEs

Leukotriene A₄

HETEs

LTC₄

LTD₄

LTF₄

LTE₄

Lipoxins
<table>
<thead>
<tr>
<th>Vasoconstricting</th>
<th>Vasodilating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macula densa-mediated tubuloglomerular feedback</td>
<td>Prostaglandins</td>
</tr>
<tr>
<td>Angiotensin II</td>
<td>PGI$_2$</td>
</tr>
<tr>
<td>Arachidonic Acid Products</td>
<td>PGE$_2$</td>
</tr>
<tr>
<td>Thromboxane</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>Leukotrienes</td>
<td></td>
</tr>
<tr>
<td>P450 metabolites</td>
<td></td>
</tr>
<tr>
<td>Endothelins</td>
<td>Atrial Natriuretic Peptides</td>
</tr>
<tr>
<td>Adenosine</td>
<td>Dopamine</td>
</tr>
<tr>
<td>Platelet activating factor</td>
<td>Kinins</td>
</tr>
<tr>
<td>Adrenergic nerves</td>
<td>Histamine</td>
</tr>
<tr>
<td></td>
<td>Acetylcholine</td>
</tr>
</tbody>
</table>
Leukocyte Activation in Ischemic ARF

Ischemic Kidney

Local production of inflammatory mediators
- cytokines (TNFα, IL-1), chemokines (IL-8, MCP-1)
- complement activation products
- platelet activating factor (PAF)
- metabolites of arachidonic acid
- reactive oxygen species (ROS)

Activated Leukocytes

- CD3
- CD11c/CD18
- CD11b/CD18

Endothelial Cell

Increased expression of adhesion molecules on endothelial cells

- ICAMs
- VCAM
- selectins

Procoagulant effects

Release of ROS, proteases, elastases, leukotrienes, PAF
ISCHEMIC INJURY

INFLAMMATION/IMMUNE RECOGNITION
Amelioration of experimental acute renal failure by inhibition of leukocyte infiltration:

- anti-neutrophil serum
- anti-ICAM-1 mAb
- ICAM-1 antisense oligonucleotides
- ICAM-1 knockout
- anti-CD11 mAb
- P-selectin glycoprotein ligand-1
- blockade of the CD28-B7 costimulatory pathway
- Adenosine A2A receptor antagonists
Fig. 1. *Three degrees of medullary hyperemia distinguished within 3 hr of ischemia.* Each ischemic, left kidney, is shown beside the contralateral, right kidney of the same animal. The ischemic kidney at the bottom right is one from the mildly affected group. The middle right ischemic kidney is typical for the moderately affected group. The top right ischemic kidney is one from the severely affected group.
Fig. 1. The degree to which the renal vasculature can be filled with silicone rubber in the ischemic kidney above and in the contralateral control kidney from the same animal immediately below. The cortical vasculature is equally well-filled in each kidney pair, but in the ischemic kidney, there is no filling of the inner stripe vessels, except for the descending vasa recta, and the capillary plexus cannot be demonstrated.
<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Site of renal injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-molecular-weight proteins</td>
<td></td>
</tr>
<tr>
<td>u1-microglobulin</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>u2-microglobulin</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Retinol binding protein</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>High-molecular-weight proteins</td>
<td></td>
</tr>
<tr>
<td>Albunin</td>
<td>Glomerular</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>Glomerular</td>
</tr>
<tr>
<td>Transthyretin</td>
<td>Glomerular</td>
</tr>
<tr>
<td>Brush border antigens</td>
<td></td>
</tr>
<tr>
<td>Aldehyde dehydrogenase</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Laminin</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Other tubular antigens</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Urinary enzymes</td>
<td></td>
</tr>
<tr>
<td>Neutrophil elastase</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Neutrophil elastase</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Carboxypeptidase B</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Others</td>
<td></td>
</tr>
<tr>
<td>Cystatin-C</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Cystatin-K</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>(S,E)-Thiop</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Extracellular vesicles</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Hepatocyte growth factor</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Sodium/hydrogen exchanger Nedd4-2</td>
<td>Proximal tubule</td>
</tr>
<tr>
<td>Leucine aminopeptidase</td>
<td>Proximal tubule</td>
</tr>
</tbody>
</table>

*Note: *The asterisk (*) indicates a renal tubular factor.
<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Detection assay</th>
<th>Associated injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIM-1</td>
<td>ELISA/Luminex</td>
<td>Nephrotic, AKI</td>
</tr>
<tr>
<td>NGLA1</td>
<td>ELISA/Luminex</td>
<td>Nephrotic, AKI, RGC</td>
</tr>
<tr>
<td>IL-18</td>
<td>ELISA/Luminex</td>
<td>RAC, DMF, ARF</td>
</tr>
<tr>
<td>Cystatin C</td>
<td>nephelometry</td>
<td>Reduced eGFR, proteinuria</td>
</tr>
</tbody>
</table>

This table outlines promising biomarkers for AKI in humans. KIM-1 is detected using ELISA/Luminex and is associated with nephrotic, AKI. NGLA1 is detected using ELISA/Luminex and is associated with nephrotic, AKI, RGC. IL-18 is detected using ELISA/Luminex and is associated with RAC, DMF, ARF. Cystatin C is detected using nephelometry and is associated with reduced eGFR, proteinuria.
Measuring Glomerular Filtration Rate

Clearance = \frac{\text{Total Amount Excreted in Urine}}{\text{Serum Concentration}}

Clearance of a compound is equal to the glomerular filtration rate (GFR) when that agent is delivered to blood at a constant rate, is freely filtered in the glomerulus, and is neither secreted nor reabsorbed by the tubules. Under normal conditions, creatinine is produced at a constant rate in muscle, is freely filtered, is not reabsorbed, and is only minimally secreted, which allows creatinine clearance to be used as a measure of GFR.
DAYS OF GFR DECREASE TO 10

SERUM CREATININE CONCENTRATION (mg/100 ml)

DAYS OF GFR DECREASE TO 10

Source Undetermined
Fig. 6. Biopsy of renal cortex from a patient with ‘acute tubular necrosis’, showing focal coagulative necrosis of tubular cells (center tubule). Other features include tubular cells and cell debris in tubular lumina, regenerative changes and a tubular cell mitosis (arrowhead), interstitial edema, and vacuolization of vascular smooth muscle cells (arrows). × 650.
The Recovery Process

a) In the absence of cell loss - simple reprocessing and resynthesis of structural macromolecules and transporters with recovery of polarity and tight junctions.

b) After cell loss -
 • Spreading and simplification of adjacent cells to 'seal' the epithelium.
 • Proliferation under the control of autocrine and both local and distant paracrine growth factors.
 • Redifferentiation with recovery of polarity and tight junctions.

c) The time required for this recovery process after cell loss helps explain why recovery of function in ischemic acute renal failure often begins only after a delay of 1-2 weeks.
Fig. 6. Growth regulation in regenerating renal epithelial cells. Cells at the edge of an injured segment of the nephron are shown during early renal regeneration following acute tubular necrosis. Pictured are non-necrotic cells, a dividing cell, and a migrating squamous cell. Proliferation may be mediated in part by synthesis of growth-stimulatory factors, followed by cellular processing and release of the active molecules. Symbols for growth factors, precursors, and receptors are as in Figure 3.
Fig. 1. Mechanisms of cell-cell communication by growth factors. Cells synthesize precursor molecules (depicted in the cytoplasm) that can be processed and released to act as growth factors on cells that produced them (autocrine), neighboring (paracrine), or distant cells (endocrine). Also, the precursor can be incorporated into the plasma membrane and act on adjacent cells (juxtacrine). The thickened curved and angular regions of the plasma membrane indicate receptor sites for growth-promoting and growth-inhibitory molecules, respectively. □, stimulatory growth factors; □, inhibitory growth factors; - - - - - - - a, precursor molecules.
Pathophysiology of Ischemic and Toxic Acute Renal Failure

MICROVASCULAR

Glomerular
- ↑ Vasoconstriction
 - endothelin, adenosine, angiotensin II, thromboxane A2, leukotrienes, sympathetic nerve activity
- ↓ Vasodilation
 - nitric oxide, PGE2, acetylcholine, bradykinin
- ↑ Endothelial and vascular smooth muscle cell structural damage
- ↑ Leukocyte-Endothelial adhesion vascular obstruction, leukocyte activation, and inflammation

Medullary

O₂/TOXINS

- Inflammatory and vasoactive mediators
 - Cytoskeletal breakdown
 - Loss of polarity
 - Apoptosis and Necrosis
 - Desquamation of viable and necrotic cells
 - Tubular obstruction
 - Backleak
Objectives

1. Understand the three element etiological approach to acute renal failure and be aware of the major disease entities in each category.

2. Be able to calculate fractional sodium excretions and use them in the evaluation of acute renal failure.

3. Know the urinary sediment abnormalities that provide clues to the etiology of acute renal failure.

4. Understand the use and interpretation of ultrasound examination of the kidneys in the diagnosis of ARF.

5. Know the general indications for dialysis.

6. Be aware of specific considerations in approaching some common causes of ARF, i.e. NSAIDs, angiotensin blockade, contrast nephropathy, aminoglycosides.
Acute Renal Failure/Acute Kidney Injury

Increase of BUN and/or creatinine of recent, abrupt onset reflecting a sudden loss of net, effective clearance capacity of the kidney.

Urine output can vary. Oliguria refers to < 400 cc./day; many forms are “non-oliguric.”
APPROACH TO ACUTE RENAL FAILURE

PRERENAL
RENAL
POSTRENAL
PRERENAL ETIOLOGIES

- Hypovolemia
 Gastrointestinal, renal, or skin fluid and electrolyte losses
 Hemorrhage
 Third spacing - burns, pancreatitis, peritonitis, anaphylaxis, sepsis, portal hypertension
- Cardiac failure
 Infarction
 Cardiomyopathy
 Valvular disease
- Hepatorenal syndrome
- Nonsteroidal anti-inflammatory drugs
- Angiotensin blockade - ACEI, ARB
B1. Normal condition

- +: vasoconstriction
- -: vasodilation
- Autoregulation
- Afferent arteriole
- Glomerulus
- Efferent arteriole
- Tubule
- • Myogenic reflex (Laplace)
- • Tubuloglomerular feedback

B2. Perfusion pressure reduced but still within autoregulatory range
- congestive heart failure
- renal artery stenosis
- diuretic therapy
- nephrotic syndrome cirrhosis
- sodium restriction depletion
- advanced age [age >80]

B3. Perfusion pressure seriously reduced (prerenal azotemia)

B. Sympathetic activity
- angiotensin II
- Local angiotensin II
- Local angiotensin II
- Intraglomerular pressure

PGE₂
POST RENAL ETIOLOGIES

Extrarenal obstruction
- Urethral stricture
- Bladder, pelvic, prostatic or retroperitoneal neoplasms
- Prostatic hypertrophy
- Surgical complications
- Stones
- Hematoma
- Anticholinergics
- Neurogenic bladder

Bladder rupture
MAJOR INITIAL ELEMENTS OF THE WORKUP

Medication issues
 Nonsteroidals
 ACE inhibitors
Contrast studies
Antibiotics
 Direct nephrotoxicity
 Hypersensitivity reactions

Volume status

Urinalysis

Urine chemistry

Bladder emptying capacity and renal ultrasound
Assessment of Volume Status During Acute Renal Failure

- Physical examination
 Blood pressure with orthostatic changes
 Jugular venous pressure
 Temperature of the extremities
 Skin color and turgor

- BUN/Creatinine ratio
 >20 - prerenal
 ~10 - renal

- Pulmonary artery catheter
 RA and wedge pressure
 Cardiac output and peripheral resistance
Use of the Urinary Sediment in the Differential Diagnosis of Intrinsic Acute Renal Failure

Red Blood Cells
- Favor glomerular rather than tubulointerstitial processes
- Even more strongly suggestive of glomerular disease if dysmorphic and/or present as red cell casts
- Red colored, strongly heme positive urine without substantial numbers of RBCs suggests pigment nephropathy.

Tubule epithelial cells and granular casts
- Present in ischemic and toxic ATN, but may also be seen during 'prerenal' azotemia, interstitial nephritis, and acute glomerulonephritis.
- Highly colored in pigment nephropathy

Pyuria and WBC casts
- Pyelonephritis
- Identify eosinophils by Wright's or Hansel's stains
- Need to discriminate WBCs from tubule epithelial cells - Sternheimer-Malben stain

Crystals
- Uric acid during uric acid nephropathy
- Oxalate after polyethylene glycol intoxication
Urinary Chemical Indices in the Diagnosis of Oliguria

<table>
<thead>
<tr>
<th></th>
<th>Prerenal Azotemia</th>
<th>Acute Tubular Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Na} (mEq/L)</td>
<td><20</td>
<td>>40</td>
</tr>
<tr>
<td>U_{Cl} (mEq/L)</td>
<td><20</td>
<td>>40</td>
</tr>
<tr>
<td>U_{osm} (mosm/kg/H$_2$O)</td>
<td>>500</td>
<td><350</td>
</tr>
<tr>
<td>U/P osmolality</td>
<td>>1.3</td>
<td><1.1</td>
</tr>
<tr>
<td>U/P creatinine ratio (mg/dL)</td>
<td>40</td>
<td><20</td>
</tr>
<tr>
<td>RFI</td>
<td>$\frac{U_{Na}}{U/P_{cr}}$</td>
<td><1</td>
</tr>
<tr>
<td>$F_{e_{Na}}$</td>
<td>$\frac{(U/P){Na}}{(U/P){cr}}$</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>0.01</td>
</tr>
</tbody>
</table>
CAUSES OF ARF ASSOCIATED WITH LOW FRACTIONAL SODIUM EXCRETION

- PRERENAL
 Intravascular volume depletion due to hemorrhage, GI losses, third spacing
 Low cardiac output secondary to myocardial dysfunction
 NSAIDs
 Hepatorenal syndrome

- RENAL
 Acute GN
 Contrast
 Early pigment nephropathy

- POSTRENAL
 Early obstruction
COMPLICATING FACTORS IN THE USE OF LOW FRACTIONAL SODIUM EXCRETION IN THE DIAGNOSIS OF ARF

- Recent use of drugs with diuretic effects including loop diuretics, mannitol, dopamine
- Heavy glycosuria or mannitol treatment
- Continuing excretion of contrast agent
- Recent aggressive fluid replacement
- Alkalemia with increased bicarbonate excretion
- Patient not oliguric
RADIOLOGICAL ASSESSMENT DURING ACUTE RENAL FAILURE

Plain abdominal film
IVP
Retrograde pyelogram
Computed tomography
Angiography
Ultrasound
Radioisotope studies

Factors that determine usefulness - Sensitivity for providing the necessary information, invasiveness, need for IV contrast.
ROLE OF ULTRASOUND IN THE DIAGNOSIS OF ARF

Non-invasive, no IV contrast or other toxicity

Relatively cheap and widely available
ROLE OF ULTRASOUND IN THE DIAGNOSIS OF ARF

Determination of renal size

'Quality' of renal parenchyma

Rule out obstruction
 98% sensitive
 74% specific
 15% false positive

False negatives due to:
 Early (1-3d) obstruction
 Infiltrative (tumor, fibrosis) processes
CLUES TO TYPES OF UNDERLYING KIDNEY DISEASE FROM MEASUREMENTS OF KIDNEY SIZE

• Equal, normal sized kidneys in a patient with renal insufficiency strongly favor a process of recent onset.

• Bilaterally small kidneys favor a chronic process that has affected both kidneys similarly and led to substantial parenchymal loss, e.g. chronic glomerulonephritis, nephrosclerosis secondary to hypertension.

• Asymmetrical kidneys suggest large vessel renovascular disease.

• Large kidneys with nephrotic syndrome accompanied by renal insufficiency suggest diabetes or amyloidosis.

'Quality' of renal parenchyma

Rule out obstruction
 98% sensitive
 74% specific
 15% false positive

False negatives due to:
 Early (1-3d) obstruction
 Infiltrative (tumor, fibrosis) processes
ROLE OF ULTRASOUND IN THE DIAGNOSIS OF ARF

Determination of renal size

'Quality' of renal parenchyma

Rule out obstruction
 98% sensitive
 74% specific
 15% false positive

False negatives due to:
 Early (1-3d) obstruction
 Infiltrative (tumor, fibrosis) processes
Fig. 6-11. Urographic and ultrasonographic (US) appearance of normal (column A) and progressively dronephrotic kidneys (columns B–D). Middle horizontal row illustrates longitudinal US scans, and bottom horizontal row depicts transverse scans. (From Ellenbogen et al. with permission.)
MANAGEMENT

Withdraw offending drugs

Correct hypotension or fluid deficits

Monitor I/O, weight, BUN, Creatinine, lytes, PO\(_4\) daily

Dose adjust renally excreted medications

If oliguric:

??? Diuretics
INDICATIONS FOR DIALYSIS

Unmanageable fluid overload

Hyperkalemia

Acidosis

Uremia, BUN > 80-100

Uremic complications - bleeding, mental status

Timing of initiation depends on:
 Severity of labs and clinical findings
 Trajectory
DAYS OF GFR DECREASE TO 10

SEUM CREATININE CONCENTRATION (mg/100 ml)

DAYS OF GFR DECREASE TO 10

Source Undetermined
Continuous renal replacement therapy during ARF with CVVHD using citrate anticoagulation
Patients with ARF requiring RRT

Factors: CHF Low BP Ventilator
 GI dysf Sepsis Coma

Average survival = 25%
ATN

1 yr
No recovery: 5
Partial recovery: 31
Total recovery: 63

5 yr
No recovery: 11
Partial recovery: 32
Total recovery: 57

Acute GN

1 yr
No recovery: 24
Partial recovery: 35
Total recovery: 41

5 yr
No recovery: 47
Partial recovery: 24
Total recovery: 29

Acute TIN

1 yr
No recovery: 25
Partial recovery: 75
Total recovery: 67

5 yr
No recovery: 8
Partial recovery: 25
Total recovery: 67

HUS/ACN

1 yr
No recovery: 63
Total recovery: 91

5 yr
No recovery: 9
Partial recovery: 27
Total recovery: 9
CONSIDERATIONS FOR SOME SPECIFIC DISEASE ENTITIES
Intravenous Contrast

- ‘RENAL’ form of ARF in that the agents are direct tubule toxins and the renal dysfunction is not immediately reversible.

- ‘PRERENAL’ form of ARF in that FE_{Na} is often low and vasoconstriction is a major factor.

-High risk groups - Diabetics > other causes of CRF.
CONTRAST NEPHROPATHY

• Serum creatinine increase ≥ 0.5 mg/dl in 3.3% of 7586 patients.

• Cre < 1.1 – 3.7% in diabetics, 2% in nondiabetics

• Cre 1.2-1.9 – 4.5% in diabetics, 1.9% in nondiabetics

• Cre 2–2.9 – 22.4%

• Cre > 3 – 30.6%

• 22% mortality with ARF, 1.4% without, odds ratio 10.3
GROUPS AT RISK FOR CONTRAST NEPHROPATHY

- GFR < 60 estimated by MDRD or Cockroft Gault
- Diabetics
- Repeat administration within 36 hours
- Emergent studies
- Shock
PREVENTING CONTRAST NEPHROPATHY

• Hold NSAIDs, diuretics, ? ACEI/ARB

• Diuretics, mannitol non-specific endothelin blockade ineffective and possibly deleterious.

• Volume expansion prior to and following procedure has well established benefit – NaHCO$_3$ $>$ isotonic NaCl $>$ $\frac{1}{2}$ NS.

• Minimize amount of contrast used.

• Risk from low osmolarity contrast $<$ isosmolar contrast $<<$ high osmolarity contrast.

• Oral N-acetylcysteine of uncertain benefit, but inexpensive, nontoxic.

• Benefit of fenoldopam, theophylline not established.
Aminoglycosides

- Every course is toxic. Hypotension or ischemia plus aminoglycosides are potentially synergistic in their toxicity. Don't use unless absolutely necessary. Switch if cultures and clinical condition allow you to.

- Dose by the estimated clearance taking into account size (muscle mass), age, and sex, not the absolute level of creatinine.

- Dose adjustments for decreased renal function should be by lengthening the interval as opposed to reducing the dose.

- Levels are important as a guide to how you are doing, but high troughs frequently indicate that problems that are destined to be progressive have already begun.

- If you must continue dosing despite nephrotoxicity, use levels as a guide to when to next dose.

- Course of nephrotoxicity - anticipate full expression of acute renal failure well after you have stopped dosing.
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 13: Source Undetermined
Slide 14: Source Undetermined (Fig 2-3)
Slide 15: Guder and Ross
Slide 17: Source Undetermined
Slide 18: Source Undetermined
Slide 19: Source Undetermined
Slide 20: Source Undetermined
Slide 21: Source Undetermined
Slide 24: Source Undetermined
Slide 25: Source Undetermined
Slide 26: Source Undetermined
Slide 28: Source Undetermined
Slide 31: Source Undetermined
Slide 32: Source Undetermined
Slide 33: Thadani and Bonventre NEJM
Slide 33: Source Undetermined
Slide 34: Source Undetermined
Slide 35: Source Undetermined
Slide 36: Source Undetermined
Slide 37: Han, 2008
Slide 37: Han, 2008
Slide 40: Source Undetermined
Slide 41: Faber, Kupin, Krishna, Narins
Slide 42: Source Undetermined
Slide 43: Source Undetermined
Slide 45: Source Undetermined
Slide 46: Source Undetermined