Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

Public Domain – Government: Works that are produced by the U.S. Government. (17 USC § 105)
Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.

Creative Commons – Zero Waiver
Creative Commons – Attribution License
Creative Commons – Attribution Share Alike License
Creative Commons – Attribution Noncommercial License
Creative Commons – Attribution Noncommercial Share Alike License

GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Transplant Surgery and Immunology

Randall Sung M.D.
Assistant Professor of Transplant Surgery

Fall 2008
Renal Transplantation
Technical Consideration
Surgical Complications

• Vascular
 – Arterial
 – Venous
• Ureteral leak/stenosis
• Wound
 – Hematoma
 – Lymphocele
Implantation of the pancreas allograft in the right side

- Vena cava
- Aorta
- Allograft pancreas
- Celiac axis or iliac "Y" graft
- Portal vein
- Stomach
- Recipient small bowel
- Common iliac vessels
- Allograft Duodenum
Transplant Immunology

The Biology of the Alloresponse
Learning Objectives

• To understand the role of the MHC
• To understand the 3 signals needed for T-cell activation
• To understand the mechanisms of transplant rejection
• To understand how transplant rejection is prevented
Thymic Selection

A. Lack of positive selection
- Thymic epithelial cell
- CD4+CD8+ thymocyte
- CD4
- CD8

Failure to recognize peptide-MHC complex on thymic epithelial cell
- Apoptotic cell death

B. Positive selection
- Thymic epithelial cell
- CD4+CD8+ thymocyte
- CD4
- CD8
- Class II MHC

Low-affinity/avidity recognition of peptide-MHC complex on thymic epithelial cell
- Rescue from programmed cell death; conversion to single positive

C. Negative selection
- Thymic antigen-presenting cell
- CD4+CD8+ thymocyte
- CD4
- CD8
- Class II MHC

High-avidity recognition of peptide-MHC complex on thymic antigen-presenting cell
- Apoptotic cell death
Central Paradigm for Cellular Initiation of an Immune Response
• MHC I antigen processing
 A Protein
 B Proteasome
 C MHC class I protein synthesis
 D Peptides for presentation
 E ER
 F Plasma membrane
1. Ubiquitination
2. Protein degradation to peptides by proteasome
3. Transporting peptides to the lumen of ER by ABC transporters
4. Binding of peptides in a groove of MHC I complex
5. Antigen presentation on plasma membrane

• MHC II antigen processing
 A Foreign protein
 B Endosome
 C Lysosome
 D Late endosome/Phagolysosome
 E Rough ER
 F Golgi apparatus
 G CLIP for antigen exchange
 H Antigen presentation at plasma membrane

CC BY-SA-2.5 Masur (Wikipedia) http://creativecommons.org/licenses/by-sa/2.5/
Antigen Presenting Cells

• Dendritic cells
• Macrophages
• B Lymphocytes
• Vascular endothelial cells
• Various epithelial and parenchymal cells
Antigen Presentation on APC

• Occurs through the major histocompatibility complex (MHC)

• The MHC are a group of genes that are responsible for the recognition of the graft as foreign

• The principal function of MHC is to present foreign antigen fragments that can be recognized by specific antigen receptors on T cells
MHC Class I and Class II

[Diagram showing MHC Class I and Class II structures with peptide-binding regions and A, B, C, DR, DQ, DP, HLA, and GLO regions.]
MHC Class I Molecule (HLA A2)
MHC Class I and II

- Class I is presented on all nucleated cells and recognized by CD8+ T cells

- Class II is presented on APC and recognized by CD4+ T cells
Human Leukocyte Antigen (HLA)

HLA’s are polymorphic cell-surface molecules (alloantigens) that are encoded by the MHC genes.
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>B5103</td>
<td>Cw1</td>
<td>DR1</td>
<td>DQ1</td>
<td>DPw1</td>
</tr>
<tr>
<td>A2</td>
<td>B52(5)</td>
<td>Cw2</td>
<td>DR103</td>
<td>DQ2</td>
<td>DPw2</td>
</tr>
<tr>
<td>A203</td>
<td>B53</td>
<td>Cw3</td>
<td>DR2</td>
<td>DQ3</td>
<td>DPw3</td>
</tr>
<tr>
<td>A210</td>
<td>B54(22)</td>
<td>Cw4</td>
<td>DR3</td>
<td>DQ4</td>
<td>DPw4</td>
</tr>
<tr>
<td>A3</td>
<td>B55(22)</td>
<td>Cw5</td>
<td>DR4</td>
<td>DQ5(1)</td>
<td>DPw5</td>
</tr>
<tr>
<td>A9</td>
<td>B56(22)</td>
<td>Cw6</td>
<td>DR5</td>
<td>DQ6(1)</td>
<td>DPw6</td>
</tr>
<tr>
<td>A10</td>
<td>B57(17)</td>
<td>Cw7</td>
<td>DR6</td>
<td>DQ7(3)</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>B58(17)</td>
<td>Cw8</td>
<td>DR7</td>
<td>DQ8(3)</td>
<td></td>
</tr>
<tr>
<td>A19</td>
<td>B59</td>
<td>Cw9(w3)</td>
<td>DR8</td>
<td>DQ9(3)</td>
<td></td>
</tr>
<tr>
<td>A23(9)</td>
<td>B60(40)</td>
<td>Cw10(w3)</td>
<td>DR9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A24(9)</td>
<td>B61(40)</td>
<td>DR10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2403</td>
<td>B62(15)</td>
<td>DR11(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A25(10)</td>
<td>B63(15)</td>
<td>DR12(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A28(10)</td>
<td>B64(14)</td>
<td>DR13(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A28</td>
<td>B65(14)</td>
<td>DR14(6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A29(19)</td>
<td>B67</td>
<td>DR1403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A30(19)</td>
<td>B68(16)</td>
<td>B70</td>
<td>DR1404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A31(19)</td>
<td>B69(16)</td>
<td>B71(70)</td>
<td>DR15(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A32(19)</td>
<td>B7001</td>
<td>B72(70)</td>
<td>DR16(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A33(19)</td>
<td>B7002</td>
<td>B73</td>
<td>DR17(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A34(10)</td>
<td>B7005</td>
<td>B75(21)</td>
<td>DR18(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A36</td>
<td>B71(5)</td>
<td>DR51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A43</td>
<td>B7102</td>
<td>DR52</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A66(10)</td>
<td>B72(15)</td>
<td>DR53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A68(28)</td>
<td>B73(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A69(28)</td>
<td>B74(12)</td>
<td>B77(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A74(19)</td>
<td>B7801</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B47</td>
<td>Bw4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B49(21)</td>
<td>Bw6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antigens listed in parentheses are the broad antigens; antigens followed by broad antigens in parentheses are the antigen splits.
MHC Polymorphism

• MHC molecules are highly polymorphic to allow extraordinary levels of diversity in functionally important regions (peptide binding site) without losing structural integrity.

• The large number of polymorphic MHC molecules expressed by an individual permits binding of an extensive range of structurally different peptides.
Three Signals of Tcell Activation

• Antigen presentation and recognition (provides specificity – essential but not sufficient)

• Costimulation – needed for T-cell proliferation

• Autocrine proliferation
Role of Co-stimulation in T Cell Activation

A. Antigen recognition

"Resting" (costimulator-deficient) APC

Naive T cell

T cell response

No response

B. Activation of APCs by microbes, innate immune response

Activated APCs: increased expression of costimulators, secretion of cytokines

Cytokines (e.g., IL-12)

B7

CD28

Effecter T cells

T cell proliferation and differentiation

IL-2
The image depicts a diagram illustrating the interaction between T cells and APCs (Antigen Presenting Cells). It shows the pathway of antigen presentation and the differentiation of T cells.

1. Donor Ag, which is the antigen presented by the APC.
2. MHC class II antigen binding to the TCR (T-cell receptor) on the T cell.
3. CD4 and CD28 molecules on the T cell surface.
4. T cell activation and the subsequent events leading to anergic T cells or proliferation and differentiation to effector T cells.

The diagram highlights the role of B7 molecules in the costimulation of T cell activation.
Intracellular signaling pathways in T cell activation

ANTIGEN PRESENTING CELL

FIRST SIGNAL

TD T CELL

SECOND SIGNAL

Tyrosine kinase

PLC C\textsubscript{Y1}

PIP\textsubscript{2}

DAG

IP\textsubscript{3}

Intracellular Ca2+

Calcineurin

NFAT\textsubscript{p}

NFAT\textsubscript{p}

NFAT\textsubscript{p}

INDUCTION OF CYTOKINE GENES AND OTHER T CELL ACTIVATION GENES

CD28RC

PKC

Jun

Fos

Source Undetermined
Allorecognition
Direct vs Indirect