Use + Share + Adapt

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Kidney and Upper Urinary Tract

J. Stuart Wolf, Jr., M.D.
Professor of Urology

Fall 2008
Syllabus

- If I show you graphics that are NOT in your syllabus
 - Then they are NOT critical for the test
 - They are to familiarize you with Urologic operative techniques, for their interest rather than for testing purposes
- Radiography will be on test, but not the actual images
Kidney and Upper Urinary Tract

Objectives

- Appreciate importance, evaluation, and differential diagnosis of hematuria
- Gain basic understanding of major disease processes of kidney and upper tract
 - Obstruction
 - Calculi
 - Infection
 - Renal masses and cysts
Kidney and Upper Urinary Tract

Clinically-Oriented Lecture

Hematuria

Evaluation and Differential

Case presentations of representative entities
Hematuria

- **Definition**
 - ≥ 3 RBC / hpf in urinary sediment
 - Dipstick is screening test only
 - Dipstick is 95% sensitive, but only about $\sim 80\%$ specific
 - In population with 10% hematuria, PPV of Dipstick is only 35%
 - Positive Dipstick indicates hematuria ONLY when confirmed by microscopy of ≥ 3 RBC / hpf
Hematuria

- Additional Characterization
 - Gross (grossly visible) or microscopic?
 - Gross more likely significant
 - If gross, is it initial (urethra), terminal (bladder neck or prostate), or total (interior of bladder or upper tract)
Hematuria

Evaluation 1: Examine Urine

- In women, get cath. UA if > 1 squamous cell / hpf (vaginal contamination)
- Is color red but dipstick - ?
 - Consider phenolphthalein, rhodamine B, others
- Is dipstick + but no RBC present?
 - Beware if specific gravity < 1.008 (RBC may have been there, but lysed)
 - Usually false positive test
 - Unfortunately, a common referral
Evaluation 1: Examine Urine

- Is there pyuria or bacteruria?
 ➔ Probable infection (any GU site)
- Is there proteinuria (> 2+ on dipstick), or are there dysmorphic RBCs or RBC casts?
 ➔ Probable glomerulonephritis
Evaluation 2: History and Physical

- Flank Pain
 - Stone
- Dysuria, bladder irritability
 - Bladder or prostate infection
- Sickle cell, diabetes
 - Papillary necrosis
- Family or personal history of calculi, PCKD, other GU / Neph diseases
 - Possible familial trait
Hematuria

Evaluation 2: **History and Physical**

- Trauma, or intense physical activity
 - May be cause of hematuria
- Tobacco use, occupational chemical exposure (aromatic dyes)
 - Risk for renal and urothelial cancers
Hematuria

Evaluation 2: History and Physical

- Visible blood at urethral meatus
 - Urethral source
- Fever, CVAT
 - Pyelonephritis
- Prostate exam
 - Prostatitis, Prostate cancer
- Pelvic Exam
 - Urethral, vaginal, or labial lesions
Hematuria

Evaluation 3: Labs and Procedures

- Formal urinalysis with microscopic examination
- Urine culture
 - If infection is DOCUMENTED, then can omit rest of work-up if hematuria clears with antibiotics
- IVU versus KUB + US versus CT
- +/- Urine cytology
- +/- Serum electrolytes and creatinine
- Cystoscopy
Hematuria

Diagnostic Categories

- Infection
- Calculi
- Cancer
- Benign neoplasms / lesions
- Other obstruction
- Trauma / exertional hematuria
- Medical renal disease
- Blood dyscrasia / anticoagulation
- Benign familial hematuria
Hematuria

Infection

- Kidney
 - Pyelonephritis - parenchyma
 - Pyonephrosis - pus in collecting system
 - Renal abscess - pus pocket in parenchyma
Hematuria

Infection

- Bladder
 - Bacterial cystitis
- Prostate
 - Bacterial prostatitis
- Urethra
 - Infectious urethritis
Hematuria

Calculi

- Kidney
 - Obstructive vs. Non-obstructive
 - Simple vs. Staghorn
- Ureter
 - Obstructive vs. Non-obstructive
- Bladder
Hematuria

Cancer

- Kidney
 - Renal cell carcinoma, other
- Upper collecting system
 - Urothelial, other
- Bladder
 - Urothelial, other
- Urethra
 - Squamous cell, other
- Prostate
 - Adenocarcinoma, other
Hematuria

Benign Neoplasms / Lesions

- Kidney
 - Simple cysts
 - Cystic renal diseases
 - Angiomyolipoma, other neoplasms
- Ureter
 - Hemangioma, other
- Bladder
 - Endometrioma, other
- Urethra
 - Condyloma, other
Hematuria

Other Obstructions

- Ureter
 - Ureteropelvic junction (UPJ)
 - Intrinsic strictures
 - Extrinsic obstruction
- Bladder
 - Bladder outlet obstruction (BOO)
 - Benign prostatic hyperplasia (BPH)
 - Other
- Urethra
 - Strictures, other
Hematuria

Trauma / Exertional Hematuria
- Cannot be assumed to be cause

Medical Renal Disease
- Previous Nephrology lecture

Blood Dyscrasia / Anticoagulation
- Cannot be assumed to be cause

Benign Familial Hematuria
- Microscopic only, negative work-up
Kidney, Intra-renal Collecting System, and Ureter

- Topics covered (case presentations)
 - Ureteral obstruction (UPJO)
 - Calculi (ureteral, renal)
 - Infection (pyelonephritis)
 - Cancer (renal cell carcinoma)
 - Renal cystic disease (ADPKD)
Kidney & Upper Urinary Tract: Obstruction

Case 1: Ureteropelvic Junction Obstruction (UPJO)

- 24 year old woman
- Long history of intermittent left flank pain, recently worsening
- Not during sleep
- Especially notices after fluid intake, or even more after drinking alcohol
- No significant medical history
Kidney & Upper Urinary Tract: Obstruction

Case 1: Ureteropelvic Junction Obstruction (UPJO)

- Young age - diagnosed mostly in children, variable after that
- Intermittent symptoms - typical of adult presentation
- Pain increased with fluid intake
 - Classic for UPJO
 - Flow-dependent obstruction (like a slow but not-yet clogged drain)
Kidney & Upper Urinary Tract: Obstruction

Anatomy of Kidney and Upper Urinary Tract

- Paired Kidneys
- Urine from collecting tubules that terminate in papillae drain into:
 - Calyces, that coalesce into
 - Infundibula, which drain into
 - Renal Pelvis
- Travels down ureter (peristalsis)
Kidney & Upper Urinary Tract: Obstruction

Calyx

Infundibulum

Renal Pelvis

J.S. Wolf
Kidney & Upper Urinary Tract: Obstruction

Anatomy of Kidney and Upper Urinary Tract

- “Tight spots” prone to obstruction
 - Ureteropelvic junction (UPJ)
 - Mid-ureter as crosses iliac vessels (over sacrum on plain radiograph)
 - Ureterovesical junction (UVJ)
- Of these, the UPJ most common site of congenital obstruction
Kidney & Upper Urinary Tract: Obstruction

Case 1: Ureteropelvic Junction Obstruction (UPJO) Evaluation

- Intravenous urogram
 - Unilateral hydronephrosis and non-visualization of ureter
- Diuretic renal scintigraphy
 - 50% split renal function
 - $T_{1/2}$ (time for $\frac{1}{2}$ of tracer to exit kidney) on symptomatic side > 100 minutes (normal < 10 minutes)
Intravenous Urogram

Left hydronephrosis and non-visualization of the ureter
Diuretic Renal Scintigraphy

Excretion from left kidney is delayed.
Case 1: Ureteropelvic Junction Obstruction (UPJO) Treatment

- Percutaneous endopyelotomy
 - A minimally-invasive alternative to formal pyeloplasty
- Nephro-ureteral stent capped off in 1 week, and removed in 6 weeks
 - Complete resolution
Kidney & Upper Urinary Tract: Obstruction

Causes of UPJO

- Primary
 - Histological disorganization
 - excess longitudinal muscle fibers (loss of normal organization)
 - increase in collagen
 - attenuation of muscle bundles
 - Crossing vessels, high insertion, kinks, bands
- Secondary
 - Traumatic scar, iatrogenic scar, external compression (think cancer!)
Evaluation of UPJO

- Determine presence and degree of obstruction
 - Is there obstruction, or just dilation?
 - Complete or partial obstruction?
- Determine renal function
 - If kidney not working well, may be little value in repairing
- Determine cause of obstruction
Kidney & Upper Urinary Tract: Obstruction

Dilation of the Urinary Tract

- Non-obstructive
 - Ureteral reflux, prior obstruction, extra-renal pelvis, diuresis
 - Stagnation may lead to infection and calculi, but usually innocuous

- Obstructive
 - Increased resistance to urine flow that produces increased proximal pressure and subsequent loss of organ function
 - Occasionally difficult to distinguish from non-obstructive
Massive Vesico-ureteral Reflux on Cystogram
Evaluation of UPJO

- Anatomic tests
 - Intravenous urography
 - Renal (surface) ultrasonography
 - Computed tomography
 - Endoluminal ultrasonography

- Functional tests
 - Ultrasonography with resistive indices
 - Diuretic renal scintigraphy
 - Whitaker test
Intravenous Urography

Normal kidney

Hydronephrosis
Renal Ultrasonography

Hydronephrosis
Computed Tomography
Can determine additional anatomy, including vessels crossing at UPJ
Computed Tomography
Can determine additional anatomy, including vessels crossing at UPJ
Endoluminal Ultrasonography
Can detect vessels crossing over UPJ, but requires retrograde catheterization
Ultrasonography with Resistive Indices (PSV - LDV) /PSV: Normal

Diastolic flow velocity is preserved
As resistance to blood flow increases, diastolic flow velocity decreases, and resistive index increases (R.I. > 0.70)
Diuretic Renal Scintigraphy: most definitive non-invasive test

$T^{1/2} = \text{Time for } \frac{1}{2} \text{ of radiotracer to be excreted from kidney after furosemide}$

$T^{1/2} = 5 \text{ minutes (normal < 10 min.)}$

$T^{1/2} = 25 \text{ minutes (obstructed > 15 min.)}$

Sources Undetermined
Whitaker Test: most definitive test
Pressure in renal pelvis at set infusion rate through nephrostomy tube (> 15 mmHg at 15 cc/min infusion = obstruction)
Kidney & Upper Urinary Tract: Obstruction

Treatment of UPJO

- Open pyeloplasty
- Laparoscopic pyeloplasty
- Percutaneous endopyelotomy
- Retrograde balloon dilation
- Retrograde endopyelotomy
- Acucise® (cutting balloon) endopyelotomy

Most Invasive / Most Effective

Least Invasive / Least Effective
Break
Case 2: Acutely Obstructing Distal Ureteral Calculus

- 30 year old man
- Sudden onset of right flank pain
- Initial gross hematuria, but now clear
- No fevers and chills, but nausea
- Frequent urination
- Pain somewhat less after a few hours
- Restless, moving about
- Right flank, lower quadrant, and testicular pain / tenderness
- 5 - 10 RBC / hpf on urinalysis
Kidney & Upper Urinary Tract: Calculi

Case 2: Acutely Obstructing Distal Ureteral Calculus

- Sudden onset pain - c/w renal colic
- Urine cleared - suggests obstruction
- Nausea - very common with renal colic
- Freq. urination - irritation by distal calculi
- Pain decreased - forniceal rupture, decrease in pressure from renal hemodynamics
- Moving about - NOT peritonitis
- Flank to scrotum - expected radiation
- Urinalysis - RBCs in 85%
Suspected Acute Ureteral Obstruction Differential Diagnosis

- Intrinsic
 - Calculi, tumor, clot, edema
- Extrinsic
 - Compression by tumor, lymph node
- Acute versus acute-on-chronic
 - Calculi, or calculi impacted into partially-obstructing stricture?
 - Clot, or clot on tumor?
Kidney & Upper Urinary Tract: Calculi

Suspected Acute Ureteral Obstruction Radiographic Evaluation

- KUB and Intravenous urography
 - Anatomic picture, localize pathology
- Ultrasonography
- CT
 - Non-contrast (stones)
 - CT urogram (with contrast, like IVU)
- Retrograde pyelography
 - Injection through catheter
Intravenous Urography

This stone is less dense than contrast material, so appears as a filling defect.
Intravenous Urography

This stone is faintly radio-opaque ...
Intravenous Urography

... and is easier to identify when contrast material comes down to it.
Spontaneous Passage of Ureteral Stones

<table>
<thead>
<tr>
<th>Width</th>
<th>Proximal</th>
<th>Middle</th>
<th>Distal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 mm</td>
<td>20%</td>
<td>45%</td>
<td>55%</td>
</tr>
<tr>
<td>5 mm</td>
<td>6%</td>
<td>30%</td>
<td>45%</td>
</tr>
<tr>
<td>6 mm</td>
<td>0%</td>
<td>10%</td>
<td>25%</td>
</tr>
</tbody>
</table>
Ultrasonography

Hydronephrosis
Computed Tomography (almost) all stones dense on CT
Computed Tomography

Secondary signs of ureteral obstruction
Computed Tomography

Secondary signs of ureteral obstruction
Computed Urography
Intravenous Urography

Source Undetermined

Irregular Filling Defect
Kidney & Upper Urinary Tract: Calculi

If “filling defect” on contrast study …

- Neoplasm
 - Urothelial neoplasm most common
- Blood clot
 - Will resolve during follow-up
- “Radio-lucent” calculus (15%)
 - Other 85% are calcium containing
 - Refers to appearance on plain film (all typical stones are opaque on CT scan)
 - Radio-lucent stones are usually uric acid (only medically dissolvable stone)
- Need to rule-out tumor!
Case 3: Non-obstructing Renal Calculus

- 65 year old man
- Microscopic hematuria
- Remote history of urolithiasis
- Mild prostatism
- Unremarkable PE except for prostatic enlargement
- Urinalysis - 10 RBC / hpf
Plain Radiography

Densely radio-opaque stones
Indications for Surgical Treatment of Urolithiasis

- Urinary tract infection
- Significant obstruction
- Pain refractory to oral medication
- Others
 - Staghorn calculi - risk of urosepsis
 - Long-standing ureteral calculi - eventual obstruction
 - Occupational or lifestyle reasons
Plain Radiography

Staghorn Calculus
Kidney & Upper Urinary Tract: Calculi

Surgical Treatment of Urolithiasis

- Open surgical / laparoscopic lithotomy
- Percutaneous nephrostolithotomy (Antegrade endoscopy)
- Ureteroscopy (Retrograde endoscopy)
- Extracorporeal shock wave lithotripsy (SWL)

Most Invasive / Most Effective

Least Invasive / Least Effective
Aperture Angle – Focal Size (20 kV; -6dB line)

<table>
<thead>
<tr>
<th>Angle</th>
<th>Size</th>
<th>Size</th>
<th>Size</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>62°</td>
<td>16 x 100 mm</td>
<td>66°</td>
<td>3,5 x 34 mm</td>
<td></td>
</tr>
<tr>
<td>66°</td>
<td>7.5 x 40 mm</td>
<td>6 x 38 mm</td>
<td></td>
<td>81°</td>
</tr>
</tbody>
</table>

F₂

HM 3 HM 3 mod / HM 4 MFL 5000 MPL 9000

Source Undetermined
Kidney & Upper Urinary Tract: Calculi

Parameters Determining Treatment of Urolithiasis

- Size
- Location
- Composition
- Medical Condition, Patient Preference, Physician Preference
Kidney & Upper Urinary Tract: Calculi

Size

- Small
 - SWL
- Moderate
 - Ureteroscopy
- Large
 - Percutaneous nephrostolithotomy
Kidney & Upper Urinary Tract: Calculi

Location

- Distal Ureter
 - Scope > SWL
- Middle Ureter
 - Scope > SWL
- Proximal Ureter
 - SWL > Scope ?
- Kidney
 - SWL > Scope
Computed Tomography

Distal aspect of UVJ, almost in bladder
Computed Tomography

Huge bilateral renal calculi
Kidney & Upper Urinary Tract: Calculi

Composition

- Dense (Calcium oxalate monohydrate)
 - Scope
- Fuzzy/ Faint (Calcium oxalate dihydrate, calcium phosphate, struvite)
 - SWL
- Cystine
 - Scope
- Uric Acid
 - SWL
Plain Radiography

Densely radio-opaque stone
Plain Radiography

“Fuzzy” radiopaque stone

Source Undetermined
Case 4: Pyelonephritis

- 29 year old woman
- Started with 3 days of dysuria (painful urination), urinary frequency / urgency
- Now temp 101.7°F, right flank pain
- History
 - Occ previous UTI
 - Recently married
 - Limited sexual activity before marriage, now active
- PE - Right CVAT
Kidney & Upper Urinary Tract: Pyelonephritis

Case 4: Pyelonephritis

- Young woman - UTI is common
- Initial cystitis (infection ascends) common and suggest UTI
- Systemic symptoms - distinguishes upper from lower tract UTI
- Previous UTI - helps establish her characteristic symptoms of UTI
- Sexual activity - predisposing factor for UTI in women
- CVAT - renal involvement
Acute Pyelonephritis

- Most common disease of the kidney
- Usually ascending infection
- Diagnosis by clinical findings and urine culture (85% are GNR; E. Coli)
- Imaging used to detect complications or to assess for predisposing factors
- Complications: papillary necrosis, pyonephrosis, abscess, sepsis
- Predisposing factors: obstruction, calculi, vesico-ureteral reflux
Lobar Nephronia
Management of Acute Pyelonephritis

- Typical case - fever resolves within 48 hrs of starting antibiotics
 - Oral abx in most
 - Intravenous abx if very ill-appearing
- Debilitated patients at greater risk
 - Diabetes mellitus
 - Steroids
 - Chronically ill
 - Immuno-suppressed
Management of Acute Pyelonephritis

- History of complications or lack of response to antibiotics
 - US or CT for obstruction, calculi
- Upper tract obstruction with infection
 - DRAINAGE (stent, percutaneous tube)
- Upper tract calculus with infection
 - Treat acute infection, then calculus
- If child or recurrent
 - US for scars
 - Voiding cystogram for reflux
Kidney & Upper Urinary Tract: Pyelonephritis

Drainage procedures

- Percutaneous nephrostomy tube
- Ureteral stent
Break
Case 5: Renal Cell Carcinoma (RCC)

- 64 year old man
- Gross hematuria
- Flank pain
- History
 - 66 pack-year smoker
- PE
 - Fullness in right flank
Case 5: Renal Cell Carcinoma (RCC)

- Older man - peak in 6th decade, 3:1 M:F overall
- Hematuria - most common presenting sign
- Flank pain and flank mass - along with hematuria, the classic triad
- Smoking - major acquired risk factor
Demographics of RCC

- Incidence: 12.8 per 100,000 (’00 - ’04)
- Mortality: 4.2 per 100,000 (’00 - ’04)
- estimated 51,190 new cases in 2007 (~2% of adult malignancies)
- estimated 12,890 deaths in 2007
- Lifetime Risk (M / F)
 - Risk of occurrence - 1.71 / 1.01 %
 - Risk of death - 0.59 / 0.35 %

SEER Cancer Statistics
Risk factors for RCC

- Cigarettes
- Obesity
- Hypertension
- Occupational exposures
- Dialysis
- Hereditary
 - von Hippel-Lindau disease
 - Tuberous Sclerosis
Pathology of RCC

- Proximal tubular cell neoplasm
- Often venous involvement
- Hemorrhagic, necrotic, cystic, and calcified components common
- Metastasize most commonly to lung, liver, bone, adrenal, and contralateral kidney
Common Renal Tumors

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Malignant?</th>
<th>Relative %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal Cell Ca.</td>
<td>Yes</td>
<td>85%</td>
</tr>
<tr>
<td>Urothelial Ca.</td>
<td>Yes</td>
<td>5%</td>
</tr>
<tr>
<td>Oncocytoma</td>
<td>No</td>
<td>5%</td>
</tr>
<tr>
<td>Other</td>
<td>Most not</td>
<td>5%</td>
</tr>
</tbody>
</table>
Kidney & Upper Urinary Tract: Masses & Cysts

Histology

- Most Renal Cell Carcinomas have “Clear cell” histology
 - Lipids (dissolve out during slide processing) and glycogen
 - Fuhrman grading (1 to 4)
 - 1 = well differentiated
 - 4 = poorly differentiated
Genetics

- Most renal cell carcinomas are sporadic
- Are associated with several syndromes, the most common of which is Von-Hippel Lindau syndrome
 - Autosomal dominant
 - Cerebellar and retinal vascular tumors
 - Adrenal and renal tumors (inc cysts)
Genetics

- Von-Hippel Lindau syndrome
 - Autosomal dominant
 - Mutation in VHL tumor suppressor gene: 3p25-26
- 95% of sporadic “clear cell” renal cell carcinomas have VHL mutation
 - One of the strongest associations among solid tumors
 - Opportunities for gene therapy
Kidney & Upper Urinary Tract: Masses & Cysts

Symptoms / Signs of RCC

- Hematuria (29 – 60%)
- Flank pain (14 – 51%)
- Flank mass (21 – 47%)
- All 3 = Classic triad
 - Present in < 10%
 - Usually signifies advanced disease
Paraneoplastic Syndromes

- ESR elevation
- Calcium elevation
- Polycythemia
- Anemia
- Thrombophlebitis
- Hyperinsulinism
- LFT elevation
Kidney & Upper Urinary Tract: Masses & Cysts

Central Role of Imaging

Simple Cyst → Benign

Indeterminate Cyst → ?

Solid Mass → Malignant
Stage Migration of RCC due to more frequent imaging

- **1970’s**
 - 4% of RCC \leq 3 cm
 - 32% presented with metastases

- **1980’s**
 - 25 - 40% were incidental finding
 - 25% of RCC \leq 3 cm
 - 17% presented with metastases

- **1990’s**
 - 60% were incidental finding
Kidney & Upper Urinary Tract: Masses & Cysts

Imaging Modalities

- Intravenous Urography (IVU, IVP)
- Ultrasonography (US)
- Computed Tomography (CT)
- Magnetic Resonance Imaging (MRI)
Kidney & Upper Urinary Tract: Masses & Cysts

Intravenous Urography

- Typical upper tract imaging for hematuria work-up
- Excellent visualization of collecting system
- Renal mass or cyst causes displacement of surrounding organ or deformation of outline
- Screening study only
- If renal mass / cyst suspected, further imaging is required
Intravenous Urography

Mass Effect in kidney
Kidney & Upper Urinary Tract: Masses & Cysts

Ultrasonography

- Usual follow-up to IVU suspicious for renal mass / cyst
- No ionizing radiation
- Non-invasive
- Operator dependent
- Reliably identifies simple cyst (85% of renal mass / cysts)

If NOT a simple cyst
 ➡️ Cross-sectional imaging
Ultrasonography

Simple Cyst
Sonographic Characteristics

- Anechoic with enhanced through transmission
 - Simple cyst
- Echogenic with acoustic shadowing
 - Stone or other calcification
- Iso / hypoechoic mass
 - Solid mass
Ultrasonography

Renal Stone

Source Undetermined
Ultrasonography

Nodule in Cyst

Source Undetermined
Ultrasonography

Solid Mass

Source Undetermined
Kidney & Upper Urinary Tract: Masses & Cysts

Computed Tomography

- Current gold standard
- Non-contrast scan, then scan with intravenous contrast
 - Enhancement = Hounsfield units (density) increase by >10 with contrast
- 3 to 5 mm maximum cut width
- Spiral CT - single breath hold
 - Minimize motion artifact
 - Exact duplication of cuts
Computed Tomography

Simple Cyst

Source Undetermined
Computed Tomography

Complex Cyst
Renal Cell Carcinoma
Kidney & Upper Urinary Tract: Masses & Cysts

Solid, Enhancing Renal Mass on CT is RCC until Proven Otherwise

- Other possibilities
 - Oncocytoma
 - Benign, but indistinguishable from RCC on imaging
 - Angiomyolipoma
 - Benign, but can bleed if large
 - Usually diagnosed by imaging fat
 - Inflammatory mass
 - History of febrile illness
 - Lymphoma
 - Malignant, but no surgery
Angiomyolipoma
Renal Abscess
Renal Lymphoma
Kidney & Upper Urinary Tract: Masses & Cysts

Magnetic Resonance Imaging

- Currently no advantage over CT except in certain situations
 - Allergy to contrast material
 - Elevated creatinine
 - Distinguish wall in some cysts
 - Detection of venous tumor thrombus in RCC (has replaced invasive venography)
Magnetic Resonance Imaging

Thick Cyst Wall
Magnetic Resonance Imaging

Tumor Thrombus in Vena Cava
Kidney & Upper Urinary Tract: Masses & Cysts

Sensitivity for Diagnosis of RCC ≤ 3 cm

- Intravenous urography - 67%
- Ultrasonography - 79%
- Computed tomography - 94%
Kidney & Upper Urinary Tract: Masses & Cysts

Evaluation of Suspected RCC

- Initial imaging study (often IVU or US, either incidentally or for workup of hematuria or other signs / symptoms)
- CT or MRI for local assessment
 - Define lesion
 - Assess nodes, vein, other organs
- Staging
 - CXR, Bloods, + Bone Scan and others
Kidney & Upper Urinary Tract: Masses & Cysts

Staging and Management of RCC

- **Stage I**
 - Tumor < 7 cm limited to kidney (T1)
 - no LN+ or metastases
 ➔ Radical or Partial Nephrectomy

- **Stage II**
 - Tumor > 7 cm limited to kidney (T2)
 - No LN+ or metastases
 ➔ Radical Nephrectomy
Kidney & Upper Urinary Tract: Masses & Cysts

Staging and Management of RCC

- **Stage III**
 - Tumor into vein, fat, or adrenal
 - **Or** one single LN+
 - ➔ Radical Nephrectomy

- **Stage IV**
 - Tumor beyond Gerota’s fascia (T4)
 - **Or** > 1 LN+ Or metastases
 - ➔ Systemic Therapy (Chemo, Immuno)
Kidney & Upper Urinary Tract: Masses & Cysts

Prognosis of RCC

<table>
<thead>
<tr>
<th>Stage</th>
<th>5 year survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>~90%</td>
</tr>
<tr>
<td>Stage II</td>
<td>~80%</td>
</tr>
<tr>
<td>Stage III</td>
<td>~40 - 60%</td>
</tr>
<tr>
<td>Stage IV</td>
<td>~10%</td>
</tr>
</tbody>
</table>
Kidney & Upper Urinary Tract: Masses & Cysts

Case 6: Autosomal Dominant Polycystic Kidney Disease (ADPKD)

- 37 year old woman
- No recent medical care
- Left flank “fullness”
- Adopted, unknown family history
- PE
 - Mass in left flank
 - BP 170/100
Case 6: Autosomal Dominant Polycystic Kidney Disease (ADPKD)

- Middle-aged - usually diagnosed in third decade
- “Fullness” - HUGE bilateral cysts, symptomatic in ~15%
- Over 50% have family history
- Hypertension - almost always, given enough time
ADPKD

- Autosomal dominant inheritance
 - 85% from *PKD1* mutation (16q13)
 - 15% from *PKD2* mutation (4q21-23)
- Virtually 100% penetrance

- Incidence
 - 1 / 1000 live births
 - 6000 new cases annually

- Prevalence ~ 200,000
Kidney & Upper Urinary Tract: Masses & Cysts

ADPKD

- Epithelial proliferation in renal tube → renal tubule become cyst → as cyst grows it compresses renal parenchyma
- < 1% tubules become cysts
- Also hepatic, pancreatic and splenic cysts, and cerebral aneurysms
- Hypertension
- Renal failure - most but not all, usually in 5th decade
Other Cystic Diseases of the Kidney

- Simple cysts
 - In population over age 50
 - 50% pathologically, 33% by CT
 - Single or multiple
- Simple cyst complicated by hemorrhage or infection ("Complex cyst")
- Acquired cystic kidney disease (ACKD)
 - 40% of dialysis patients by 3 years
 - Controversial increase in RCC
ACKD
Kidney & Upper Urinary Tract: Masses & Cysts

Evaluation of Renal Cysts

- Simple cysts definable with US
 - No further work-up needed
- ADPKD, ACKD
 - Definable by history and PE
- “Complex Cyst”
 - Simple cyst complicated by infection or hemorrhage
 - Cystic renal cancer
 - Diagnostic dilemma, surgery often required
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy