Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Lung Cancer

M2 – Respiratory Sequence
Douglas Arenberg, M.D.
Cancer Mortality Rates - Male

Cancer Death Rates* Among Men, US, 1930-2005

*Age-adjusted to the 2000 US standard population.
Cancer Mortality Rates - Female

Cancer Death Rates* Among Women, US, 1930-2005

*Age-adjusted to the 2000 US standard population.
National Center for Health Statistics, Centers for Disease Control and Prevention, 2006.
One of these things is not like the others

Incidence

Mortality

Breast

Colon

Lung

Prostate

Approximate Cancer Stage at Diagnosis

% of All Stages

Breast | Prostate | Colorectal | Lung

I | II | III-IV

D. Arenberg
With respect to lung cancer, which of the following is true?

- Surgery offers the only chance for a cure in lung cancer
- Below a certain absolute level of lung function, surgery is absolutely contraindicated
- Thoracoscopic lobectomy is less painful but results in inadequate staging of mediastinal lymph nodes
- Post-operative chemotherapy prolongs survival and offers a greater chance of long term cure
• How do lung cancer patients differ from other cancer patients?
 – Many co-morbid diseases
 – Surgery implies part removal of a vital organ
 – Surgery for locally advanced disease is not usually standard of care
 – Role(s) of adjuvant and neoadjuvant therapy is less well defined (until recently)
Patients with lung nodules should be assumed to have cancer until proven otherwise.

Dr. Arenberg, have you taken leave of your senses?
Principles guiding the evaluation of patients with lung nodules

- **#1 Do you or do you not have lung cancer**
 - Lung nodules are cancer until *proven* otherwise
 - Certainty/urgency of proof differs for each patient

- **Over 98% of lung nodules detected by CT scan are benign**
Cancer until proven otherwise?

- Clinical history
 - Recent febrile illness
- Radiologic
 - Size stability?
 - CT evidence of benign calcification pattern
- PET scanning
- Biopsy
 - Bronchoscopic or FNA
 - Surgical
FDG-PET

Diagnostic Performance of PET in Assessment of Mediastinal Lymph Nodes of Lung Cancer. 2007 J Nuc Med 48 (11)

<table>
<thead>
<tr>
<th>Index</th>
<th>Visual interpretation (%)</th>
<th>SUV Cutoff of 2.5 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>91 (85–98)</td>
<td>89 (81–96)</td>
</tr>
<tr>
<td>Specificity</td>
<td>85 (81–90)</td>
<td>84 (79–88)</td>
</tr>
<tr>
<td>Accuracy</td>
<td>87 (82–91)</td>
<td>85 (81–89)</td>
</tr>
<tr>
<td>Positive predictive value</td>
<td>64 (55–73)</td>
<td>61 (52–71)</td>
</tr>
</tbody>
</table>
Principles guiding the evaluation of patients with lung nodules

• **#2 If you have lung cancer, is it resectable**
 – *For now*, surgery offers the greatest possibility of cure (assume a cancer is resectable until *proven* otherwise)
 – Risk of morbidity & mortality
 – No benefit in locally advanced disease (IIIa or worse)
 – Accurate staging is a must

• A surgeon must be involved in the determination of whether a patient has “resectable” cancer
Factors which predict a higher likelihood of cancer

- Size of the nodule
- Border (spiculated versus smooth)
- Age of the patient
- History of tobacco use
- Location of the nodule (upper lobe higher risk than lower lobe)
- Prior history of cancer
Causes of lung cancer

• Tobacco smoking
• Tobacco smoking
• Tobacco smoking
 – Some types of lung cancer more closely associated with tobacco than others
 – Small cell > squamous > adeno
 – All are more common in smokers
• Asbestos
• Radon
• Genetic susceptibility?
 – Common risk factors for both lung cancer and tobacco addiction/dependence
Causes of lung cancer

• Tobacco
 – Fewer than 10% of smokers get lung cancer

• Tobacco
 – Smokers with COPD are at much greater risk than smokers without COPD

• Over 50% of newly diagnosed lung cancer patients are former or never smokers
Lung cancer signs and symptoms at presentation*

<table>
<thead>
<tr>
<th>Finding</th>
<th>% of Pts (n=214)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough</td>
<td>54</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>36</td>
</tr>
<tr>
<td>Weight loss</td>
<td>33</td>
</tr>
<tr>
<td>Chest pain</td>
<td>32</td>
</tr>
<tr>
<td>Fatigue</td>
<td>20</td>
</tr>
<tr>
<td>Anorexia</td>
<td>16</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>15</td>
</tr>
<tr>
<td>Hoarseness</td>
<td>9</td>
</tr>
</tbody>
</table>

- Most people with these symptoms DO NOT have lung cancer
- Early stage lung cancer causes NO symptoms!!
Squamous Cell Carcinoma

• Used to be the most common type
• More common in the proximal of the tracheobronchial (60 to 80%)
• Squamous cancers are more likely to be cavitated than other types
• A subset occur as endobronchial lesions in patients with a normal CXR.
 – Patients present with persistent cough, recurrent hemoptysis, or relapsing pulmonary infections due to airway obstruction.
• 5 year survival 65% (combined stages)
Adenocarcinoma

The most common type of lung cancer

Most frequent histologic type in women and nonsmokers of either sex.
Most adenocarcinomas are located peripherally (75%).
Bronchoalveolar carcinoma — subtype of adenocarcinoma, probably more indolent
- An origin distal to grossly recognizable bronchi
- Well-differentiated cytology
- A propensity for aerogenous and lymphatic spread
- Growth along intact alveolar septa
 ("lepidic" growth pattern; Air-bronchograms)
Small Cell Carcinoma

- 15 to 20%. Smokers (nearly only)
- Are neuroendocrine lung tumors
- *Rapid* doubling time, early development of widespread metastases.
- Highly sensitive to chemo- and radiotherapy
 - Almost always relapses in < 2 years. Only 3-8% survive beyond 5 years. Not a surgical disease.
- Typically a large hilar mass with massive mediastinal adenopathy
 - Cough, dyspnea, weight loss, debility, post-obstructive pneumonia.
- 70% present with metastatic disease
Goals in work-up of patients with suspected lung cancer

• Find every patient who can tolerate surgery
• Find every patient whose disease is anatomically amenable to surgery
• For patients who meet both criteria, introduce them to a surgeon, quickly
 – Do not pass go, do not collect $200 and DO NOT biopsy!!
• Minimal work-up
 – Spirometry, liver/renal/coagulation
 – Assessment of exercise tolerance (usually clinical)
 – CT scan with IV contrast
 – Consider PET scanning if available
NSCLC stages

- Lymph nodes
- Invasion of chest wall
- Main bronchus
- Contralateral lymph node
- Metastasis to distant organs

- Stage 0
- Stage IA
- Stage IIB
- Stage III B
- Stage IV
Barriers to surgical resection

Physiologic

- Poor lung function, co-morbidity etc.,
- Healthy Normal PFT

Anatomic

- T4
- T3
- T2
- T1
- N3
- N2
- N1
- N0

Staging in practice

Locally advanced disease, metastatic disease, CAD, COPD, etc.
Therapy of non-small cell lung cancer

- **Stage I-II** (disease confined to lungs and/or peribronchial lymph nodes)
 - Surgery for patients with adequate pulmonary reserve
 - Limited resection (less than lobectomy) for patients with borderline lung function

- **Stage III** (disease which has spread to mediastinal lymph nodes)
 - Chemoradiation therapy (concurrent is better than sequential, but at a greater cost in toxicity)
 - *Partial resection (leaving tumor behind) is of no value*
Chemotherapy for Non-small cell lung cancer (NSCLC)

• Cell type (squamous vs adeno vs large cell) does not matter

• Response rates generally better in phase I-II trials than in phase III RCTs

• Until recently survival difference measured in weeks
Advanced NSCLC: chemotherapy agents

- Platinum-based combination therapy gives better response rates than monotherapy and remains the ‘gold standard’ for first-line therapy for advanced disease

- Paclitaxel, vinorelbine, docetaxel, gemcitabine

- In the past 3 decades, median survival in NSCLC patients has only improved by approximately 2 months

Source: Corey Langer 2000; Breathnach et al 2001; Schiller et al 2002
Clinical Characteristics Predictive of Response to EGFR inhibitors

- Female
- Adenocarcinoma, especially Bronchioloalveolar (BAC)
- Non-Smoker
- Asian (Japan, Taiwan, Singapore)
- Development of Rash
anti-VEGF (Bevacizumab) in Advanced Stage Lung Cancer

<table>
<thead>
<tr>
<th>Response Category (Patients)</th>
<th>PC</th>
<th>PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>0.3%</td>
<td>1.4%</td>
</tr>
<tr>
<td>PR</td>
<td>10%</td>
<td>26%</td>
</tr>
<tr>
<td>CR/PR</td>
<td>10%</td>
<td>27%*</td>
</tr>
</tbody>
</table>

* *p<0.0001

Survival by Treatment

Medians: 10.2, 12.5

P = 0.007
Novel biological approaches

• Anti-angiogenic agents
 – monoclonal antibodies, eg bevacizumab (rhuMab-VEGF)
 – VEGF receptor TKIs, eg ZD6474, PTK787
 – matrix metalloproteinase inhibitors
 – thalidomide

• Vascular targeting agents, eg combretastatin A4 phosphate, ZD6126
Radiation therapy in non-small cell lung cancer

• Curative intent for early stage medically unresectable lung cancer
 – Cure rates approaching surgery when high doses can be delivered

• Excellent Palliation of bony pain, endobronchial obstruction, bleeding

• Post-operative radiotherapy yields no survival advantage for completely resected lung cancer
 – Eliminates local recurrences, but patients die of metastases

• Symptomatic radiation-pneumonitis in 4-15%
Treatment of lung cancer requires multi-modality cooperation

- Primary Provider
- Pulmonologist
- Diagnostic radiologist, Interventional radiologist, Nuclear Medicine
- Pathologist
- Thoracic Surgeon
- Medical and radiation oncologists
Why?

…why?
Summary of screening vs “controls”

- Mayo, Johns Hopkins, Memorial Sloan-Kettering, and Czeck Lung projects (Over 35,000 patients)
 - More cases detected
 - More early stage disease
 - Improved survival in the screened group
 - No difference in one’s likelihood of dying from lung cancer
ELCAP & Mayo data

• ELCAP: 1000 smokers over age 60
 – 233 patients had non-calcified nodules by CT
 – 28 cancers, 27 stage I
 – One patient with a benign nodule had surgery

• Mayo: 1520 smokers over 50 (prevalence and two annual follow up scans)
 – 1,049 (69%) patients had >2,000 nodules
 – 40 cancers detected after 3 years (26 prevalence)
 – IA (22), IB (3), IIA (4), IIB (1), IIIA (5), IV (1), and limited small cell (4)
 – 7 patients had benign nodules resected

Diagnoses of Lung Cancer Resulting from Baseline Screening and Annual Screening with CT

Kaplan-Meier Survival Curves for 484 Participants with Lung Cancer and 302 Participants with Clinical Stage I Cancer Resected within 1 Month after Diagnosis

NLST

- 50,000 current or former smokers
- 30 study sites
- Closed to enrollment in February 2004
- Slated to collect data for 8 yr
- Powered to detect a 20 percent or greater drop in lung cancer mortality from using spiral CT compared to chest X-ray
“Critical Point”
Screening is ineffective

Screening is effective

Screening is unnecessary

- Onset of Disease
- Detectable by screening
- Signs or Symptoms
- Death from Disease or Other causes

Critical Point

Critical Point

Critical Point

Critical Point

D. Arenberg
Prevention

● **Education and primary prevention**
 - avoidance of environmental carcinogens, eg tobacco smoke

● **Chemoprevention**
 - retinoids
 - EGFR inhibitors
 - selenium
 - COX-2 inhibitors
 - green tea
Phase III chemoprevention: trials in progress, July 2003

• Gefitinib vs placebo (SPORE trial)
 – former/current smokers with previous history of smoking-related cancer
 – 6 months of treatment
 – efficacy endpoints: histological response, biomarkers including the Ki-67 labelling index
 – expected accrual: 2 years to recruit 150 patients

• Selenium study E5597
 – patients following surgery for stage I NSCLC
 – 4 years of treatment
 – evaluation of effectiveness of selenium in reducing incidence of new lung tumours, and of toxicity and effects on survival compared with placebo
 – expected accrual: 1960 (980 per arm) participants within 4 years
Lung cancer: Summary

• Deadliest of all common solid tumors
• Screening not yet proven effective
• Treatment
 – Surgery for early stage patients with adequate pulmonary reserve
 – Radiation therapy for medically unresectable, early stage disease
 – *Adjuvant* chemotherapy for stage II or more
Lung cancer: Summary

Treatment
- Concurrent chemoradiation therapy for stage III disease (~15% five year survival)
- Unresectable does not mean incurable
- Stage IV, only chemotherapy, long term cures rare

• Future predictions
 - Enhanced screening based upon better risk prediction
 - Chemoprevention strategies
 - Improved treatment and prevention of tobacco dependence
 - Individualized therapy
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 4: Source Undetermined
Slide 5: Source Undetermined
Slide 7: D. Arenberg
Slide 34: D. Arenberg
Slide 27: Corey Langer 2000; Breathnach et al 2001; Schiller et al 2002
Slide 29: D. Arenberg, Sandler; ASCO 2005
Slide 34: D. Arenberg
Slide 41: D. Arenberg