open.michigan

Author(s): Margaret Gnegy, Ph.D., 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Share Alike 3.0 License:

http://creativecommons.org/licenses/by-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

Margaret Gnegy Professor Department Pharmacology

Antipsychotic Drugs

Fall 2008

The Bottom line

- All active antipsychotic drugs block dopaminergic activity
- Drugs that more potently and specifically block dopamine (DA) D2Rs & FGAs have more extrapyramidal side effects
- Drugs that block many receptors have more autonomic and metabolic side effects
- Clozapine and olanzapine have the most metabolic side effects but may be the most efficacious
- DA and glutamate systems strongly interact: schizophrenia may involve low glutamate receptor (NMDA) activity and high dopamine receptor activity

Synthesis:

TH – tyrosine hydroxylase

AADC – aromatic acid decarboxylase

Metabolism:

MAO – monoamine oxidase

COMT – catechol-Omethyltransferase

Metabolites:

DOPAC – dihydroxyphenylacetic acid

HVA: homovanillic acid

5

Feldman et al., Principles of Neuropsychopharmacology, 1997

Anatomy of dopamine neurons

Brody, Larner & Minneman, Human Pharmacology, Mosby, c1998, p. 343

Functional neuroanatomy of DA in the CNS

- <u>Nigrostriatal</u> pathway: motor planning and execution, habit formation, learning, habituation, memory
- <u>Mesolimbic</u>: complex target-oriented behavior, integrating emotional responses, motor and sensory processing
- <u>Mesocortical:</u> cognition; orchestration of thoughts and actions in accordance with internal goals
- <u>Tuberoinfundibular</u>: tonic inhibition of prolactin release, increase growth hormone release
- <u>Chemoreceptor trigger zone</u>: emesis & nausea

Early treatments of psychosis

National Library of Medicine

Bethlehem Asylum 'Bedlam', one of the first asylums (1403)

Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 445

18th century asylum ⁸

Early treatment of psychosis

- Reserpine
- Insulin shock
 - ECT
- Ice or fever therapy

フ

Pharmacological evidence supporting a role of DA in the positive aspects of schizophrenia

- Increasing dopamine worsens psychosis
 - High doses of amphetamine or cocaine can lead to a paranoid psychosis
 - Amphetamine will exacerbate an existing schizophrenic state
- Decreasing dopamine ameliorates psychosis
 - Blockade of DA receptors treats psychosis
 - Inhibition of DA synthesis ameliorates symptoms of schizophrenia
- There is enhanced amphetamine-induced DA release in schizophrenia

Schema of neurodevelopmental model of schizophrenia

Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 466

Characteristics of Antipsychotic Drugs

- Active against psychosis of any origin: idiopathic, metabolic, drug-induced
- More active against 'positive' symptoms
- Antipsychotic drugs interfere with dopamine transmission, most block dopamine receptors
- Drugs start to work relatively quickly, but it takes a few months to reach maximum effect

The potency of antipsychotic drugs in binding to the D2 family of receptors is proportional to the potency of the drugs in treating schizophrenia

This is not true for the potency of the drugs in blocking histamine H1, serotonin or αadrenergic receptors

^{🐼 📭} Kalapted from Nestler Hyman & Malencka, Molecular Neuropharmacol.ogy, McGraw Hill, c2001, p. 402

D1 Receptor Family

- 1 cAMP
- PIP₂ hydrolysis
 - Ca²⁺mobilization
 - PKC activation

- +cAMP
- t K⁺ currents
- ↓ ψ-gated Ca²⁺ currents

†β-arrestin/Akt/GSK-3β pathway

Modern Course of Treatment

- New 'atypical' antipsychotic drugs (second generation)
 - Conventional old-line drugs (first generation)
 - Clozapine

First Generation Antipsychotic Drugs

Compound			Seda- tion	Hypo- tension	Motor (EP) Effects
Phenothiazines					
Chlorpromazine	R1 _{- (СӉ2} , - N(СӉ3, 2	R2 CI	+++	++	++
Fluphenazine	- (СҢ ₂) ₃ -N _N-(СҢ ₂) ₂ ОН	CF ₃	+	+	++++
Haloperidol Haldol Water Image Sources Undetermined			÷	Ŧ	+++ + 16

Second Generation Antipsychotic Drugs

Compou	nd	Sedation	Hypo- tension	Motor effects
Risperidone		++	+++	+/++ Dose
Risperdal				dependent
Clozapine	C N CH3	++	++	-
Aripiprazole Abilify		0/+	0/+	0/+ 17

Image Sources Undetermined

Second Generation Antipsychotic Drugs

Pharmacological effects of antipsychotic drugs: blockade of DA action

Area	What dopamine	What antipsychotic	Drug profile
	does	drug does	
Basal ganglia	Control of movement	Extrapyramidal (motor) side effects: DA deficiency	High specificity > low specificity. Less with 2 nd gen. None with clozapine or quetiapine.
Limbic and frontal cortex	Affective behavior; cognition	Site of antipsychotic action	Most equally efficacious, ex. Clozapine & olanzapine
Hypothalamus & endocrine	Temp. regulation; ↓ prolactin	poikilothermic effect; ↑ prolactin	1 st Generation and risperidone
Chemoreceptor trigger zone	Nausea, emesis	Reduce nausea, emesis	1 st Generation and risperidone

In vitro profiles of the relative ability of antipsychotic drugs to bind to specific receptors

Restler Hyman & Malencka, Molecular Neuropharmacol.ogy, McGraw Hill, c2001, p. 405

Pharmacological effects of antipsychotic drugs

Area	Antipsychotic drug action	Pharmacologi cal effect	Drug profile
Autonomic effects	Blockade of α- adrenergic, muscarinic, hist H1 and serotonin receptors	Hypotension, orthostatic hypotension, ↓ ejaculation, sedation, dry mouth, etc.	Low specificityy > high specificity
Metabolic effects	Blockade of serotonin, muscarinic, dopamine, hist H1 receptors	Diabetes, weight gain	Cloz ≈ olanz > risper, quet, chlorpromaz > zipras, aripip, halop
Cardiovascul ar system	Direct and indirect effects	Mild orthostatic hypotension; Chance for prolonged QT interval	Low specificity > high specificity Dose related 21

Absorption, Distribution and Fate of Antipsychotic drugs

- Erratic absorption
- Highly lipophilic
- t 1/2 = 6-40 hrs, most taken once a day
- Metabolized by cytochrome P450 enzymes
- Clearance from brain may be slower than clearance from plasma

Depot forms of antipsychotic drugs

- Are depot forms for non-compliant patients
 - Haloperidol, fluphenazine, risperidone, [olanzapine]
- Paliperidone ER (Invega, active metabolite of risperidone) uses oral osmotic pump extended release technology
- Can give lower doses than with oral forms, less plasma level drug fluctuation
- Elimination following i.m. injection is very slow, half-life of 7-10 days
- Lower relapse rates
- Poor patient acceptance and no flexibility in dosing

Tolerance and dependence to antipsychotic drugs

- Not addicting
- Relapse in psychosis if discontinued abruptly
- Tolerance develops to sedative effects
- No tolerance to prolactin secretion
- No tolerance to antipsychotic effect

Drug Interactions of Antipsychotic drugs

- CNS Depressants: will potentiate actions of other CNS depressants: sedatives, analgesics, hypnotics, cold remedies
- Blocks effects ofl-dopa and dopaminergic agonists
- Most are metabolized by P450 system, will be affected by drugs that alter P450

Extrapyramidal side effects

EFFECT	FEATURE	TIME OF RISK	MECHANISM?	TREATMENT
Acute dystonia	Spasm of muscles	1 to 5 days	Unknown	Antimuscarinic
	of tongue, face,			agents
	neck, back			
Akathisia	Motor restlessness,	5 to 60 days	Unknown	Reduce dose,
	Anxiety			propranolol
Parkinsonism	Bradykinesia,	5 to 30 days	DA antagonism	Quetiapine or
	rigidity, tremor			clozapine
Neuroleptic	Catatonia, stupor,	Weeks, can persist	DA antagonism	Stop neuroleptic
malignant	fever, can be fatal	for days		immediately
syndrome				
Tardive	Stereotyped or	After months or	Excess function of	Prevention crucial,
dyskinesia	choreic involuntary	years of treatment,	DA?	switch to clozapine
	movements of face,	seen when		or quetiapine
	tongue, trunk	withdraw drug		

The dose response curves for efficacy and extrapyramidal symptoms are separated

Clozapine and olanzapine

- VERY low EPS
- Blocks D1, D2, D4, αadrenergic, 5HT2, muscarinic, and histamine H1 receptors
- May show greater efficacy against negative symptoms than other antipsychotic drugs
- Agranulocytosis is a potentially fatal side effect forclozapine

Source Undetermined

Both drugs have high efficacy, but cause significant weight gain and diabetes

Aripiprazole (Abilify)

- Partial agonist at D2 receptor
- Intrinsic activity depends on synaptic levels of DA
- Affinity for muscarinic, α_1 -adrenergic, serotonin and histamine receptors
- Good oral absorption, 3-5 hr to peak plasma concentration, long elimination half life
- Few extrapyramidal side effects

Action of aripiprazole, a D2R partial agonist, at dopaminergic synapse

Second generation antipsychotic drugs

- Fewer extrapyramidal side effects, usually dose dependent.
- Side effects: sedation, orthostatic hypotension, weight gain (especially clozapine, olanzapine and risperidone), potential for type II diabetes
- Efficacy of all drugs similar except forclozapine and olanzapine. But they have better efficacy but worse metabolic effects.
- Have high affinity for 5HT₂, α_1 -adrenergic receptors, varied affinity for DA receptors

Factors that may play a role in reduced EPS of 2nd generation drugs

- Receptor occupancy?
 - ~60% of D2Rs need to be occupied to get therapeutic effect
 - $\ge 80\%$ occupation gives EPS
 - Aripiprazole occupies ~85%
- Receptor binding profile: most SGAs have high affinity for a number of serotonin receptor subtypes

Glutamate also plays a role in psychosis

Winterer and Weinberger, Trends in Neurosciences, 27:686, 2004.

Model of psychosis:

Increased DAergic activity in limbic region

Decreased DAergic activity in prefrontal cortex

Decreased glutamatergic input into limbic (striatal) region and mesencephalon

Deficits in GABAergic neurons in frontal cortex ³⁴

Sinauer, c2005, p. 166

Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 167

N-methyl-D-aspartate receptor ligands

- Agonist: both glutamate and aspartate are agonists
- Co-agonist: glycine or D-serine
- Permeability: Ca²⁺ and Na⁺
- Mg²⁺: voltage-dependent block of the NMDA receptor
- Phencyclidine (PCP) and ketamine: noncompetitive antagonists

NMDA Hypothesis of Schizophrenia

Reducing glutamate worsens psychotic symptoms

- Competitive NMDA antagonists induce both positive and negative symptoms in healthy and schizophrenic subjects
- NMDA antagonists worsen symptoms in unmedicated patients with schizophrenia
- Chronic treatment with antipsychotic drugs can block effects of NMDA antagonists
- Decreased levels of glutamate in CSF, prefrontal cortex and hippocampus of schizophrenics
- NMDA agonists improve symptoms in schizophrenia

New directions for antipsychotic drugs: Glutamate agonists

New avenues for treatment of schizophrenia

- Glutamate NMDA receptor co-agonists: glycine, alanine, D-serine
- Dopamine D1 agonists (many D1 receptors in prefrontal cortex) for cognition

Hypothesized imbalances in schizophrenia

• Nicotine receptor agonists to improve cognition

Upcoming therapies for schizophrenia

D1 receptor agonist	Cognitive enhancement
Glycine, alanine, D-serine	Enhance NMDA activity, effective in reducing negative symptoms in schizophrenia, reduce cognitive impairments
Glycine reuptake inhibitors	Increase synaptic glycine
Glutamate reuptake inhibitor	Increase synaptic glutamate
Nicotinic receptor agonist	Cognitive enhancement

Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 5: Feldman et al., Principles of Neuropsychopharmacology, 1997 Slide 6: Brody, Larner & Minneman, Human Pharmacology, Mosby, c1998, p. 343 Slide 8: National Library of Medicine; Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 445 Slide 9: Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 445 Slide 11: Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 466 Slide 13: Adapted from Nestler Hyman & Malencka, Molecular Neuropharmacol.ogy, McGraw Hill, c2001, p. 402 Slide 14: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11th Ed. Brunton et al. Eds. McGraw-Hill, c2006, p. 531 Slide 15: deleted Slide 16: Source Undetermined Slide 17: Source Undetermined Slide 18: Source Undetermined Slide 19: Source Undetermined Slide 20: Nestler Hyman & Malencka, Molecular Neuropharmacol.ogy, McGraw Hill, c2001, p. 405 Slide 22: Girgis et al., Mol. Psychiatry, 2008 Slide 23: Source Undetermined Slide 28: Adapted from Brody, Larner & Minneman, Human Pharmacology, Mosby, c1998, p. 346 Slide 29: Source Undetermined Slide 30: Source Undetermined Slide 31: Source Undetermined Slide 31: Strange, TRENDS in Pharmacological Sciences, 29:315, 2008 Slide 34: Winterer and Weinberger, Trends in Neurosciences, 27:686, 2004. Slide 35: Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 166 Slide 36: Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 167 Slide 37: Jerrold & Quenzer, Psychopharmacology, Sinauer, c2005, p. 168 Slide 38: Source Undetermined Slide 40: Source Undetermined