Author(s): Louis D’Alecy, 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Non-commercial–Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Regulation of Arterial Blood Pressure

M1 – Cardiovascular/Respiratory Sequence
Louis D’Alecy, Ph.D.
Monday 11/03/08, 11:00

The **Regulation** of Arterial Blood Pressure

Regulation requires both a **sensor** and a **set point** about which the variable is **controlled**.

Arterial Baroreceptor Reflex

24 slides, 50 min.
Arterial Baroreceptor Reflex

1. “Simplified” Flow Equation
2. Total Peripheral Resistance
3. Determinants of Mean Arterial Pressure
4. Baroreceptor Function
5. Basic Arterial Baroreceptor Reflex
6. Generalized vs. Localized Vasoconstriction
7. Medullary Cardiovascular Center
Flow = \frac{P_{\text{art}} - P_{\text{ven}}}{R}

When we assume:
- \(P_{\text{ven}}\), i.e. venous pressure is zero
- \(P_{\text{art}}\), i.e. arterial pressure in MAP
- Flow is cardiac output
- \(R\) systemic vascular resistance is TPR

Then the simplified flow equation says:
\[\text{CO} = \frac{\text{MAP}}{\text{TPR}}\]
Total Peripheral Resistance (TPR) or Systemic Vascular resistance (SVR)

- from root of aorta to right atrium
- excludes heart and lungs
- cardiac output flows through this resistance
- changes with **generalized** vasoconstriction
 - or **generalized** vasodilation
CO = \frac{MAP}{TPR}

Rearrange to focus on primary variable regulated in the cardiovascular system:
ARTERIAL BLOOD PRESSURE

MAP = CO \times TPR

Think of it as stating that MAP is directly determined by CO and TPR.
To Regulate Arterial Blood Pressure:

$$\text{MAP} = \text{CO} \times \text{TPR}$$

Regulated Variable must be sensed:

Arterial Blood Pressure ($\sim\text{MAP}$)

Effectors must be controlled:

$$\text{CO} \text{ thus } \text{HR} \times \text{SV}$$

and or

$$\text{TPR}$$
REFLEX ARC AS NEGATIVE FEEDBACK CONTROL SYSTEM

INTEGRATING CENTER

AFFERENT PATHWAY

RECEPTOR

EFFERENT PATHWAY

EFFECTOR

STIMULUS

RESPONSE

NEGATIVE FEEDBACK
Arterial Baroreceptors

Hering’s nerves via glossopharyngeal

Carotid Pressure Receptors via Vagus

Image of arterial baroreceptors removed

Aortic Arch Pressure Receptors

Please see: http://mor.phe.us/jtw/Gateway/Projects/Vertebrates/images/EvolutionOfTheHeart/ArterialBaroreceptors.gif
Mean arterial pressure (MAP)

Baroreceptor action potential frequency

Mean arterial pressure (mmHg)

Rate of Sensory Nerve Firing

Normal resting value
Steady State Response

Mean pressure mm Hg

Steady pressure

40

60

80
Baroreceptor afferents thus contain not only steady pressure information but heart rate and pulse pressure information.
Arterial Baroreceptors

Fig 9.1
Arterial Baroreceptor Reflex(s)

- minimize changes in arterial blood pressure
- tend to restore MAP to initial value
- move pressure pressure in opposite direction of disturbance (negative feedback)
- utilizes (controls) HR, SV, TPR, “other” changes
- can be over ridden by other reflexes and controls
Responses (Effectors) must be controlled:

\[\text{CO} \quad \text{thus} \quad \text{HR} \times \text{SV} \]

and or

\[\text{TPR} \]
To restore Arterial Pressure
Factors influencing heart rate

+ CHRONOTROPIC

↑ Plasma epinephrine

↑ Activity of sympathetic nerves to heart

↓ Activity of parasympathetic nerves to heart

SA node

↑ Heart rate
Controllers of stroke volume

- **End-diastolic ventricular volume**
 - Frank-Starling

- **Activity of sympathetic nerves to heart**

- **Plasma epinephrine**

- **Cardiac muscle**
 - **Stroke volume**

How?
Peripheral Venous Pressure

VR

Central Venous Pressure
Cardiac output

Begin

- **End-diastolic ventricular volume**
- **Activity of sympathetic nerves to heart**

- **Plasma epinephrine**
- **Activity of parasympathetic nerves to heart**

Cardiac muscle
- **Stroke volume**

SA node
- **Heart rate**

\[\text{Cardiac output} = \text{Stroke volume} \times \text{Heart rate} \]
SYSTEMIC VASCULAR
(TOTAL PERIPHERAL RESISTANCE)

• Vasoconstriction (generalized) \(\Rightarrow \downarrow r \Rightarrow \uparrow TPR\)
 \(\Rightarrow \uparrow MAP \text{ or } \downarrow CO\)

• Vasodilation (generalized)
 \(\Rightarrow \uparrow r \Rightarrow \downarrow TPR \Rightarrow \downarrow MAP \text{ or } \uparrow CO\)

\[\uparrow\uparrow\uparrow MAP = CO \times \uparrow\uparrow\uparrow TPR\]
Fig 9.1
Other MCVC Inputs

Higher Centers
- Cortex-- cerebral, cerebellar
- Hypothalamus-- Na, H₂O, Pain, C°, Emotion, Activity

Chemoreceptors
- Carotid and aortic bodies
- Hypoxia--vasodilation BUT hypertension reflex

Cardiopulmonary low pressure baroreflexes
- Sense central venous volume
- Respond to alter fluid balance (renal effects)
- Long-term blood pressure response
TISSUE RESISTANCE

(**Assume Perfusion Pressure is Constant **)

LOCAL -- COMPETES WITH BAROREFLEX

• Vasoconstriction $\Rightarrow \downarrow r \Rightarrow \uparrow R_{tissue} \Rightarrow \downarrow F_{tissue}$

• Vasodilation
 $\Rightarrow \uparrow r \Rightarrow \downarrow R_{tissue} \Rightarrow \uparrow F_{tissue}$

$F_{tissue} = \frac{\text{Perfusion Pressure}}{R_{tissue}}$
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 10: D'Alecy
Slide 11: Please see: http://mor.phe.us/jtw/Gateway/Projects/Vertebrates/images/EvolutionOfTheHeart/ArterialBaroreceptors.gif
Slide 12: McGraw-Hill
Slide 13: Source Undetermined
Slide 14: Source Undetermined
Slide 18: McGraw-Hill
Slide 19: McGraw-Hill
Slide 20: McGraw-Hill
Slide 21: D'Alecy
Slide 22: McGraw-Hill
Slide 23: McGraw-Hill