open.michigan

Author(s): Louis D'Alecy, 2009

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution–Non-commercial–Share Alike 3.0 License:** http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about **how to cite** these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt				
{ Content th	e copyright holder, author, or law permits you to use, share and adapt. }			
@ P0-G0V	Public Domain – Government: Works that are produced by the U.S. Government. (USC 17 § 105)			
PB-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.			
C PB-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.			
(a) 21R0	Creative Commons – Zero Waiver			
(c) IIV	Creative Commons – Attribution License			
(C) 8Y-5A	Creative Commons – Attribution Share Alike License			
(6) BY-MC	Creative Commons – Attribution Noncommercial License			
(cc) BY-NC-SA	Creative Commons – Attribution Noncommercial Share Alike License			
	GNU – Free Documentation License			

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

PUD-TNEL Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

Systemic Stress Response

M1 – Cardiovascular/Respiratory Sequence Louis D'Alecy, Ph.D.

Fall 2008

Wednesday 11/12/08, 9:00 Systemic Stress Response (After Baroreceptor Reflex)

34 slides, 50 minutes

1. Reflex response to hemorrhagic stress

2. What happens next?

- 3. Starling forces and fluid shifts
- 4. Lymph flow
- 5. Vasoconstriction & absorption
- 6. VR and CO in hemorrhage

Arterial Baroreceptor Reflex(s)

- -minimize changes in arterial blood pressure
- tend to restore MAP to initial value
- moves pressure opposite disturbance
- utilizes (controls) HR, SV, TPR, "other" changes
- can be over ridden by other reflexes and controls

Source Undetermined

Intact baroreceptor reflexes minimize the response to hemorrhage involving 20% loss of blood.

Fluid Shifts after Hemmorrhage

	Normal	Immediately after hemorrhage	18h after hemorrhage
Total blood volume, mL	5000	4000 (↓20%)	4900
Erythrocyte volume, mL 2300		1840 (↓20%)	1840
Plasma volume, mL	2700	2160 (↓20%)	3060
Plasma albumin			
mass, g	135	108 (↓20%)	125
Hematocrit*	46	46	37
Source Undetermined		Ery	/thropoiesis

*Hematocrit = % of blood volume occupied by red blood cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fluid movement across capillaries <u>STARLING FORCES</u>

Capillary hydrostatic pressure (P_C) (P_{IF}) (P_{IF}) (P_{IF}) (T_{IF}) (T_{IF}) (T_{IF}) Osmotic force pressure protein concentration (T_{IF}) Osmotic force

hydrostatic pressure ("IF) Osmotic force due to interstitial-fluid protein concentration

colloid osmotic

Net filtration pressure = $(P_C - P_{IF}) - (\pi_P - \pi_{IF})$ pressure

CGraw-Hill

CAUSES OF DECREASED PLAMSA COLLOID OSMOTIC PRESSURE

- **1.** \downarrow Synthesis of albumen by liver
 - A. protein malnutrition decreased amino acid availability
 - B. liver disease decreased formation of plasma proteins
- 2. **†** Loss of albumen across capillary walls
 - A. burns
 - B. kidney disease
 - C. GI disease
- 3. latrogenic (excess IV salt solutions, hemodilution)

D'Alecy

LYMPH FLOW

Bulk fluid flow into lymphatic capillaries

Hydrostatic pressure gradient

- 1. Increased interstitial fluid volume increases P_{isf}
- 2. Decreased pressure in lymphatic capillaries

Bulk fluid flow along lymphatic network

- 1. Rhythmic contractions of lymphatic smooth muscle (one way flow due to valves in lymphatics)
- 2. Tissue compression skeletal muscle pump

Lymph vessel

Similar to venous blood flow but lower pressure and lower volume.

Contracted muscles =closed valve

Lymph flows toward thoracic duct.

Please see: http://www.vhlab.umn.edu/atlas/phystutorial/graphics/fig3.jpg

LYMPH vs. PLASMA

Flow:	Lymph	Plasma
	3 L / day	4320 L / day
	2 mL / min	3000 mL / min

Lymph

Volume 4 L (35% of 11 L of interstitial fluid)

<u>Composition</u> No RBC, some WBC

Small molecular composition equal to venous plasma Protein composition equal to interstitial fluid

	<u>protein g / L</u>
plasma	73
muscle lymph	20
intestinal lymph	40
liver lymph	50

What determines capillary hydrostatic pressure P_c? • J Arterial pressure J P_c • Venous volume (pressure) Venous volume (pressure) •Closure of arteriole $\downarrow P_{c}$ •Closure of a venule **†P**_c Local arteriolar vasoconstriction J P. •Local venoconstriction **^P**

Normal Balance Net filtration pressure = $(P_{C} - P_{IF}) - (\pi_{P} - \pi_{IF})$

Arterial end of capillary Venous end of capillary $P_{\rm C} = 15 \ \pi_{\rm P} = 28$ $P_{\rm C} = 35 \quad \pi_{\rm P} = 28$ $P_{\rm IF} = 0$ $P_{\rm IF} = 0$ $\Pi_{1F} = 3$ $\pi_{\rm IF} = 3$ Net filtration pressure = Net filtration pressure = (35 - 0) - (28 - 3) = 10 mmHg(15 - 0) - (28 - 3) = -10 mmHg10 mmHg favoring filtration 10 mmHg favoring absorption Source Undetermined

Reduced filtration

Interstitial Absorption

Arterial Baroreceptor Reflex(s)

-minimize changes in arterial blood pressure

- tend to restore MAP to initial value

- moves pressure opposite disturbance
- utilizes (controls) HR, SV, TPR, "other" changes
- can be over ridden by other reflexes and controls

Copyright @ The McGraw-Hill Companies. Inc. Permission required for reproduction or (

But OTHER VOLUME LOSSES

26

INTERSTITIAL FACTORS OPPOSING EDEMA (& PLASMA LOSS)

🛞 PD-INEL

The Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed.

Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed.

8.5 MH ³²

Some Hemorrhage Responses

34

Hemorrhage on VR and CO curves 1

CVP VR CO

A 2 mmHg 5L /min 5L /min Original curves

Hemorrhage shifts to new "hemorrhage" VR curve and momentarily unbalances system.

A' 2 mmHg 2L/min 5L/min Unstable (imaginary) central pool emptying and lowering CVP from 2 to 1 mmHg on "Hem " VR curve brings you to B

Hemorrhage on VR and CO curves 2CVPVRCOB1mmHg3 L/min3 L/minNew stable stateWITHOUTreflex compensations.

The reduced CO lowers MAP, triggers arterial baroreceptor reflex and first step (illustrated) is positive inotropic and chronotropic effects on heart. This shifts you to a new CO function curve and further empties CV pool.

You move along the VR curve from **B to C**

Hemorrhage on VR and CO curves 3CVPVRCO

C 0.3mmHg 4 L /min 4L /min Compensation further lowers CVP increasing VR and partially restores CO with SV and HR increases.

D 0.5mmHg 4.5L/min 4.5L/min
Venoconstriction shifts to a new VR curve and new stable point.

Even with near immediate baroreceptor reflex compensations the system still has not fully compensated. The heart is being autonomically (sympathetic and parasympathetic) driven, peripheral vessels are constricted and this is a <u>temporary "fix".</u>

Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 6: Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed. Slide 7: Source Undetermined Slide 8: McGraw-Hill Slide 10: McGraw-Hill Slide 11: Source Undetermined Slide 13: D'Alecy Slide 14: Source Undetermined Slide 16: Please see: http://www.vhlab.umn.edu/atlas/phystutorial/graphics/fig3.jpg Slide 18: McGraw-Hill Slide 20: Source Undetermined Slide 21: Source Undetermined Slide 23: Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed. Slide 24: Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed. Slide 26: McGraw-Hill Slide 30: Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed. Slide 31: Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed. Slide 32: Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed. Slide 33: Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed. Slide 34: Mohrman and Heller. Cardiovascular Physiology. McGraw-Hill, 2006. 6th ed.