Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Systemic Stress Response

M1 – Cardiovascular/Respiratory Sequence
Louis D’Alecy, Ph.D.
Wednesday 11/12/08, 9:00
Systemic Stress Response
(After Baroreceptor Reflex)
34 slides, 50 minutes

1. Reflex response to hemorrhagic stress

2. What happens next?

3. Starling forces and fluid shifts
4. Lymph flow
5. Vasoconstriction & absorption
6. VR and CO in hemorrhage
Arterial Baroreceptor Reflex(s)

- minimize changes in arterial blood pressure
- tend to restore MAP to initial value
- moves pressure opposite disturbance
- utilizes (controls) HR, SV, TPR, “other” changes
- can be over ridden by other reflexes and controls
Intact baroreceptor reflexes minimize the response to hemorrhage involving 20% loss of blood.
Cardiovascular effects of hemorrhage

- Stroke volume
- Heart rate
- Cardiac output (SV x HR)
- Total peripheral resistance
- Mean arterial pressure (CO x TPR)

Partial restoration of MAP
HEMORRHAGE

↓ blood volume

↓ arterial blood pressure

partial restoration of blood volume

baroreceptor mediated arteriolar vasoconstriction

↓ capillary blood pressure \(P_c \)

absorption of interstitial fluid
Fluid Shifts after Hemorrhage

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Immediately after hemorrhage</th>
<th>18h after hemorrhage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total blood volume, mL</td>
<td>5000</td>
<td>4000 (↓20%)</td>
<td>4900</td>
</tr>
<tr>
<td>Erythrocyte volume, mL</td>
<td>2300</td>
<td>1840 (↓20%)</td>
<td>1840</td>
</tr>
<tr>
<td>Plasma volume, mL</td>
<td>2700</td>
<td>2160 (↓20%)</td>
<td>3060</td>
</tr>
<tr>
<td>Plasma albumin mass, g</td>
<td>135</td>
<td>108 (↓20%)</td>
<td>125</td>
</tr>
</tbody>
</table>

Hematocrit

46

46

37

Erythropoiesis

Hematocrit = % of blood volume occupied by red blood cells
Fluid movement across capillaries

STARLING FORCES

- Capillary hydrostatic pressure \((P_C) \)
- Interstitial-fluid hydrostatic pressure \((P_{IF}) \)
- Osmotic force due to plasma protein concentration \((\pi_P) \)
- Osmotic force due to interstitial-fluid protein concentration \((\pi_{IF}) \)

Net filtration pressure = \((P_C - P_{IF}) - (\pi_P - \pi_{IF}) \)

--

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CAUSES OF DECREASED PLASMA COLLOID OSMOTIC PRESSURE

1. ↓ Synthesis of albumen by liver
 A. protein malnutrition - decreased amino acid availability
 B. liver disease - decreased formation of plasma proteins

2. ↑ Loss of albumen across capillary walls
 A. burns
 B. kidney disease
 C. GI disease

3. Iatrogenic (excess IV salt solutions, hemodilution)
LYMPHATIC SYSTEM

veins

One-way valves

capillaries

filtration

absorption

20 L per day

17 L per day

3 L per day

lymphatic capillaries permeable to proteins
pores
valves
lymphatic capillaries
collecting lymphatic
endothelial cells
anchoring filaments
Source Undetermined
LYMPH FLOW

Bulk fluid flow into lymphatic capillaries

Hydrostatic pressure gradient
1. Increased interstitial fluid volume increases P_{isf}
2. Decreased pressure in lymphatic capillaries

Bulk fluid flow along lymphatic network

1. Rhythmic contractions of lymphatic smooth muscle
 (one way flow due to valves in lymphatics)
2. Tissue compression - skeletal muscle pump
Lymph vessel flows toward thoracic duct.

Similar to venous blood flow but lower pressure and lower volume.

Contracted muscles = closed valve

Please see: http://www.vhlab.umn.edu/atlas/phystutorial/graphics/fig3.jpg
LYMPH vs. PLASMA

Flow:

<table>
<thead>
<tr>
<th>Lymph</th>
<th>Plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 L / day</td>
<td>4320 L / day</td>
</tr>
<tr>
<td>2 mL / min</td>
<td>3000 mL / min</td>
</tr>
</tbody>
</table>

Lymph Volume

4 L (35% of 11 L of interstitial fluid)

Composition

No RBC, some WBC

Small molecular composition equal to venous plasma

Protein composition equal to interstitial fluid

<table>
<thead>
<tr>
<th>protein g / L</th>
</tr>
</thead>
<tbody>
<tr>
<td>plasma</td>
</tr>
<tr>
<td>muscle lymph</td>
</tr>
<tr>
<td>intestinal lymph</td>
</tr>
<tr>
<td>liver lymph</td>
</tr>
</tbody>
</table>
How does this happen?

Back Into the Plasma Compartment
What determines capillary hydrostatic pressure P_c?

- \downarrow Arterial pressure $\downarrow P_c$
- \downarrow Venous volume (pressure) $\downarrow P_c**$
 - Closure of arteriole $\downarrow P_c$
 - Closure of a venule $\uparrow P_c$
- **Local arteriolar vasoconstriction $\downarrow P_c$**
- **Local venoconstriction $\uparrow P_c$**
Localized arteriolar vasodilation/vasoconstriction

- Artery
- Arteriole
- Capillary

Blood pressure (mmHg)

Distance along systemic blood vessels

Vasodilation

Initial state

Source Undetermined
Normal Balance

Net filtration pressure = \((P_C - P_{IF}) - (\pi_P - \pi_{IF})\)

(b)

Arterial end of capillary

\(P_C = 35\) \(\pi_P = 28\)

\(P_{IF} = 0\) \(\pi_{IF} = 3\)

Venous end of capillary

\(P_C = 15\) \(\pi_P = 28\)

\(P_{IF} = 0\) \(\pi_{IF} = 3\)

Net filtration pressure =
\((35 - 0) - (28 - 3) = 10\) mmHg 10 mmHg favoring filtration

Net filtration pressure =
\((15 - 0) - (28 - 3) = -10\) mmHg 10 mmHg favoring absorption
<table>
<thead>
<tr>
<th>Arterial end</th>
<th>Venous end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro - Osmo = ?</td>
<td>Hydro - Osmo = ?</td>
</tr>
<tr>
<td>(35-0) - (28-3) = 10 fil</td>
<td>(15-0) - (28-3) = -10 abs</td>
</tr>
</tbody>
</table>

Then Constrict Arterioles & decrease capillary pressure

<table>
<thead>
<tr>
<th>Arterial end</th>
<th>Venous end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro - Osmo = ?</td>
<td>Hydro - Osmo = ?</td>
</tr>
<tr>
<td>(25-0) - (28-3) = 0</td>
<td>(5-0) - (28-3) = -20 abs</td>
</tr>
</tbody>
</table>

Reduced filtration Interstitial Absorption
Increased Capillary Hydrostatic Pc

Decreased Hydrostatic Pc

If localized vasoconstriction or vasodilation

Increased Systemic Pressure

Decreased Systemic Pressure

If generalized vasoconstriction or vasodilation

Arterial Baroreceptor Reflex(s)

- minimize changes in arterial blood pressure
- tend to **restore** MAP to initial value
- moves pressure opposite disturbance
- utilizes (controls) HR, SV, TPR, “other” changes
- can be over ridden by other reflexes and controls
Decrease in blood volume

But other volume losses
OTHER FLUID LOSS - **diarrhea** or **sweating**

fluid loss

↓ extracellular fluid volume

↓ plasma volume

↓ P_c

↑ COP_p

due to loss of plasma water

↑ absorption of interstitial fluid

partial restoration of plasma volume
SWELLING AT SITES OF TISSUE INJURY

tissue damage

release of local chemical agents (paracrines)
e.g. histamine

arteriolar dilation

↑ Pc

↑ ultrafiltration

↓ Plasma volume

↑ COP_{isf}

fluid absorption

capillary permeability to plasma proteins

↓ tissue swelling edema

Plasma volume
INTERSTITIAL FACTORS OPPOSING EDEMA (& PLASMA LOSS)

\[\text{\uparrow net filtration} \]
\[\text{\uparrow interstitial fluid} \]

\[\text{\downarrow ultrafiltration} \]
\[\text{\uparrow lymph flow} \]

\[\text{\downarrow COP}_{\text{ifs}} \]

\[\text{\uparrow osmotic absorption} \]

Initial cause of Edema

By diluting interstitium
Direct effects of primary disturbance (uncompensated)

Cardiogenic shock
- Myocardial failure

Hypovolemic shock
- Fluid loss

Anaphylactic, septic shock
- Vasodilator release

Neurogenic shock
- Sympathetic nerve activity

- Venous tone
- Mean circulatory filling pressure
- Central venous pressure
- Arteriolar tone

- Cardiac contractility
- Cardiac filling

- Cardiac output
- Total peripheral resistance

- Mean arterial pressure

- Activity of arterial baroreceptors
- Below = 80 mmHg
- Cerebral ischemic response

Medullary cardiovascular centers
Figure 11–1. Cardiovascular alterations in shock.
Cardiac output curve

Venous return curve

Normal cardiac output curve
Some Hemorrhage Responses

Figure 8-7: Cardiovascular adjustments to hemorrhage.
Hemorrhage on VR and CO curves 1

<table>
<thead>
<tr>
<th>CVP</th>
<th>VR</th>
<th>CO</th>
</tr>
</thead>
</table>
| 2 mmHg| 5L /min | 5L /min | Original curves

Hemorrhage shifts to new “hemorrhage” VR curve and momentarily unbalances system.

<table>
<thead>
<tr>
<th>A’</th>
<th>2 mmHg</th>
<th>2L /min</th>
<th>5L /min</th>
<th>Unstable (imaginary)</th>
</tr>
</thead>
</table>

central pool emptying and lowering CVP from 2 to 1 mmHg on

“Hem “ VR curve brings you to B
Hemorrhage on VR and CO curves 2

<table>
<thead>
<tr>
<th>CVP</th>
<th>VR</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1mmHg</td>
<td>3 L/min</td>
</tr>
</tbody>
</table>

The reduced CO lowers MAP, triggers arterial baroreceptor reflex and first step (illustrated) is positive inotropic and chronotropic effects on heart. This shifts you to a new CO function curve and further empties CV pool.

You move along the VR curve from **B to C**
Hemorrhage on VR and CO curves 3

<table>
<thead>
<tr>
<th></th>
<th>CVP</th>
<th>VR</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.3mmHg</td>
<td>4 L /min</td>
<td>4L /min</td>
</tr>
</tbody>
</table>

Compensation further lowers CVP increasing VR and partially restores CO with SV and HR increases.

<table>
<thead>
<tr>
<th></th>
<th>CVP</th>
<th>VR</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.5mmHg</td>
<td>4.5L /min</td>
<td>4.5L /min</td>
</tr>
</tbody>
</table>

Venoconstriction shifts to a new VR curve and new stable point. Even with near immediate baroreceptor reflex compensations the system still has not fully compensated. The heart is being autonomically (sympathetic and parasympathetic) driven, peripheral vessels are constricted and this is a temporary “fix”.
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 7: Source Undetermined
Slide 8: McGraw-Hill
Slide 10: McGraw-Hill
Slide 11: Source Undetermined
Slide 13: D'Aleyce
Slide 14: Source Undetermined
Slide 16: Please see: http://www.vhlab.umn.edu/atlas/phystutorial/graphics/fig3.jpg
Slide 18: McGraw-Hill
Slide 20: Source Undetermined
Slide 21: Source Undetermined
Slide 26: McGraw-Hill