Author(s): Louis D’Alecy, 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Non-commercial–Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (USC 17 § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (USC 17 § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (USC 17 § 107) *laws in your jurisdiction may differ

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Respiratory Mechanics II

M1 – Cardiovascular/Respiratory Sequence
Louis D’Alecy, Ph.D.

Fall 2008
Friday 11/14/08, 9:00
Mechanics of Ventilation II
30 slides, 50 minutes

1. Tidal Volume
2. Intraplural Pressure
3. Alveolar Distending Pressure
4. Lung Compliance
5. Airway Resistance
6. Lung volumes (Spirometer)
7. Functional Residual Capacity
8. Forced vital capacity
9. Measurement of airway resistance
Tidal Volume (TV) -- air volume entering or leaving the respiratory system in a single breath. It adds to, and mixes with, alveolar gases.

Contrast with:
Minute ventilation that is total
Ventilation per minute = TV X Rate
Tidal Volume & Intraplural (P_{ip})

Inspiration

Air Entering Lung

Expiration

Air Leaving Lung

P_{ip} is

Mechanics of Breathing

Tidal Volume
Figure shows opposite direction, “down”, but volume is same

- Esophagus balloon
- Flow meter
- Calculated P_A
Trans-pulmonary or alveolar-distending pressure:

\[\text{Transpulmonary pressure} = P_A - P_{ip} \]

- "across" lung wall
- \(P_{ip} \) always negative
- not symmetrical
- max @ end of Insp.
Transpulmonary Pressure by “pumping” into isolated lung (positive)

Isolated Lung

Compliance = (slope) $\frac{\Delta V}{\Delta P}$

“ease of stretching” or “inverse of elasticity”

Figure 2-6 Pressure-volume curve for isolated lungs.

Transpulmonary Pressure by “sucking” on outside of isolated lung (negative)

Hysteresis = difference on inflation and deflation

-Surfactant
-Recruiting alveoli

Same with positive or negative pressure.
Fibrosis or stiffer lung needs more pressure to get same volume.

\[
\text{Compliance} = \frac{\Delta \text{Lung volume}}{\Delta (P_{\text{alv}} - P_{\text{ip}})}
\]
Abnormal Compliance

\[\frac{\Delta V}{\Delta P} \]

Emphysema
Greater volume change with smaller pressure change
Static P / V Excised Isolated Lung

Air filled harder to inflate than saline filled BUT...

No air = no surface tension.

Thus most inflation pressure is to overcome surface tension.
TABLE 15–3 Some Important Facts about Pulmonary Surfactant

1. Pulmonary surfactant is a mixture of phospholipids and protein.
2. It is secreted by type II alveolar cells.
3. It lowers surface tension of the water layer at the alveolar surface, which increases lung compliance (that is, makes the lungs easier to expand).
4. A deep breath increases its secretion (by stretching the type II cells). Its concentration decreases when breaths are small.
Infant Respiratory Distress Syndrome

- No functional pulmonary surfactant
- Great difficulty inflating lungs
- If inflated for them -- tend to collapse
- Very low compliance (very stiff)
- Strenuous effort needed to breathe
- Die from complete exhaustion
Work of breathing

Work ~ Pressure change \times Volume change

Elastic work overcomes:
recoil of chest wall
recoil of lung parenchyma
surface tension of alveoli

Resistive Work overcomes:
Tissue resistance
Airway resistance
Airway Resistance

The major determinant of airway resistance is the radius (r) of the airway, just as in blood vessels.

The walls of the airways are subjected to the same changes in transmural pressures as alveolar walls.

During inspiration as the intrapleural pressure decreases (becomes more negative), the transmural pressure across the airway walls will increase and the radius of the airway will increase resulting in a **decrease in airway resistance during inspiration.**
During inspiration, lung volume increases and airway resistance decreases. This is due to:

- lateral traction
- transpulmonary P or alveolar distending P

Airway resistance decreases during inspiration, while forced expiration increases it. The increase in airway resistance is associated with a decrease in lung volume.
Measurement of Lung Volumes by Spirometer

Measurement of lung volumes and capacities and their relationships under different conditions is used clinically to distinguish obstructive and restrictive disease.
The sum of four volumes determine the total lung capacity (TLC).
Each “capacity” is the sum of two or more volumes.

FRC is rest position and made of ERV + RV.

VC is maximum tidal volume.
Levitzky Volumes & Capacities

\[\text{FRC} = \text{ERV} + \text{RV} \]
FRC = ERV + RV
FRC & RV

Neither functional residual capacity (FRC) nor residual volume (RV) can be measured with simple spirometer.

THREE CLINICAL OPTIONS

1) Gas (helium) dilution****** (poor solubility) (no metabolism) (no diffusion)

2) Nitrogen-Washout Technique

3) Body plethysmography
Measurement of Functional Residual Capacity

Before Equilibration

\[C_1 \times V_1 = C_2 \times (V_1 + V_2) \]

Amount of He “Before” = Amount of He “After”

Solve for \(V_2 \).
Measure by

Helium dilution

Spirometry

\[FRC = ERV + RV \]

Calculate
Standing increase FRC by increasing ERV

Body position

FRC liters

Source Undetermined
FRC Standing is Larger Than FRC Supine
FRC Standing & Supine

When standing the abdominal contents pull down on diaphragm increasing FRC so chest has more air in it at rest (FRC).

When supine abdominal contents push diaphragm up into chest reducing FRC so chest has less air in it at rest (FRC).
"Static" Volumes & Capacities

FRC = ERV + RV
Airway Resistance 1 (Normal)

Forced expired volume in 1 sec (FEV$_1$) as a faction of Forced Vital Capacity (FVC)

\[
\frac{3.6}{4.5} = \frac{\text{FEV}_1}{\text{FVC}} = 80\%
\]

Fig 2-21

Forced Expiratory Flow 25-75%

Airway Resistance 2 (Obstruction)
More resistance so less and slower flow

\[
\frac{\text{FEV}_1}{\text{FVC}} = 50\%
\]

Forced Expiratory Flow 25-75%
Airway Resistance 3
“Rolling Seal Spirometer”

Alternative method
Not tested M1
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 7: Source Undetermined
Slide 10: Source Undetermined
Slide 11: Source Undetermined
Slide 13: Source Undetermined
Slide 14: Source Undetermined
Slide 18: Source Undetermined
Slide 19: Source Undetermined, Please see: http://www.cvrti.utah.edu/~macleod/bioen/be6000/labnotes/resp/figures/spirometer.jpg
Slide 20: Source Undetermined
Slide 21: Source Undetermined
Slide 25: Source Undetermined
Slide 27: Source Undetermined
Slide 28: Source Undetermined