Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ*

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Crystalline Arthritis

Seetha Monrad M.D.
What is gout?

• Disease state arising from the deposition of monosodium urate crystals in assorted tissues, with accompanying inflammatory and/or degenerative consequences
 – In joints -> inflammatory arthritis
 – In soft tissue -> tophi
 – In kidneys -> nephrolithiasis, nephropathy

• Most common inflammatory arthritis in men >40
Purine metabolism
Normal uric acid metabolism

Endogenous purine synthesis, tissue nucleic acid breakdown

Dietary purines

Total Body Urate Pool
Men: 1200 mg
Women: 600 mg

Renal excretion (>2/3)

Intestinal uricolyis (<1/3)

Normal serum urate levels (+2)
Men: 5.0 mg/dL, Women: 4.0 mg/dL
Renal handling of uric acid

Normal: 500-800 mg/24 hours
Hyperuricemia

- Serum uric acid >6.8 mg/dL
- Caused by uric acid overproduction and/or underexcretion
- Total body urate pool >2000 mg -> becomes insoluble
 - Non-tophaceous gout: 2-4 g
 - Tophaceous gout: 10-1000 g
Uric acid overproduction

- 10% of cases
- 24 hour urinalysis >1000 mg/d
- Causes
 - Genetic
 - Glucose-6-phosphatase deficiency (glycogen storage disease type I)
 - Hypoxanthine guanine phosphoribosyltransferase deficiency (HGPRT)
 - PRPP-synthetase superactivity
Uric acid overproduction

• Causes (con’t)
 – Excessive purine intake
 – Ethanol
 – Drugs: nicotinic acid, warfarin, chemotherapy (tumor lysis)
 – Obesity
 – Malignancies (myeloproliferative, lymphoproliferative)
 – Psoriasis
 – Hemolytic anemia
 – Tissue destruction (hypoxia, ischemia, trauma)
Uric acid underexcretion

- 90% of cases
- <500 mg/d excretion

Causes
- Genetic (polycystic kidney disease, etc.)
- Decreased GFR
- Organic acidosis
- Lead nephropathy
- Drugs
Drugs

- **Cyclosporin**
 - Reduced GFR
 - Reduces urate secretion

- **Aspirin**
 - Low dose (eg. 81 mg): inhibits urate secretion
 - High dose (>3g): decreases tubular reabsorption

- **Diuretics**
 - Volume depletion -> increased reabsorption
 - Thiazides interfere with secretion

Teng, 2006
Ethanol

- **Overproduction**
 - High purines (especially beer)
 - Produces excess AMP
 -> metabolized into uric acid

- **Underexcretion**
 - Dehydration
 - Organic acids -> overwhelm urate transporter
Hyperuricemia is NOT Gout

- Hyperuricemia present in 5-10% of adult men
- 80% of hyperuricemic patients do not develop gout
Is hyperuricemia bad?

- Hyperuricemia is associated with hypertension, renal disease, metabolic syndrome, cardiovascular disease
- Studies are beginning to suggest that uric acid is an independent risk factor for these conditions and may be involved in their pathogenesis
 - An elevated uric acid level consistently predicts the development of hypertension.
 - An elevated uric acid level is observed in 25–60% of patients with untreated essential hypertension and in nearly 90% of adolescents with essential hypertension of recent onset.
 - Raising the uric acid level in rodents results in hypertension with the clinical, hemodynamic, and histologic characteristics of hypertension.
 - Reducing the uric acid level with xanthine oxidase inhibitors lowers blood pressure in adolescents with hypertension of recent onset
- However, currently not sufficient evidence to support treatment of asymptomatic hyperuricemia

Epidemiology of gout

- Most common inflammatory arthritis in men >40
- Total prevalence ~3%; 6-9% if >80
- U.S. incidence may be rising (>2 fold)

Arromdee, Drugs, 2002
3 phases of gout

- Asymptomatic hyperuricemia
- Acute gout flares
- Chronic (tophaceous) gout
Acute gout

“The victim goes to bed and sleeps in good health. About 2 o'clock in the morning, he is awakened by a severe pain in the great toe; more rarely in the heel, ankle or instep. This pain is like that of a dislocation, and yet the parts feel as if cold water were poured over them. Then follows chills and shiver and a little fever. The pain which at first moderate becomes more intense. With its intensity the chills and shivers increase. After a time this comes to a full height, accommodating itself to the bones and ligaments of the tarsus and metatarsus. Now it is a violent stretching and tearing of the ligaments—now it is a gnawing pain and now a pressure and tightening. So exquisite and lively meanwhile is the feeling of the part affected, that it cannot bear the weight of bedclothes nor the jar of a person walking in the room.”

Thomas Sydenham
Acute gout

- 4th-6th decade (men); later in women
- Sudden onset, rapid escalation
- 1st MTP (podagra)
 - 50% have as first attack
 - 90% will have eventually
- Other lower extremity joints
- Systemic symptoms
- Extraarticular (bursitis, tenosynovitis)
- Triggered by: trauma, surgery, sepsis, overindulgence (alcohol, purine-rich foods), drugs
Intercritical gout

- Asymptomatic periods between acute flares
- Body urate load still increasing
- Joints still with MSU crystals
Chronic gout

- Chronic destructive arthritis
- Flares become polyarticular, additive, ascending
- Can be mistaken for rheumatoid arthritis
Tophaceous gout
Renal Disease

• Acute uric acid nephropathy (tumor lysis syndrome)

• Chronic urate nephropathy (tubulointerstitial disease)
 – MSU deposition in renal medulla
 – Not seen in the absence of gouty arthritis

• Uric acid nephrolithiasis
 – 10-25% of gout patients
 – Increased non-urate nephrolithiasis as well
Diagnosis: Arthrocentesis

- Can be performed even if not in acute attack
- Inflammatory joint fluid, sometimes septic appearing
Serum uric acid

• If high, suggestive but not diagnostic
• Up to 1/3 of patients having an acute gout attack may have a uric acid <7
• 24 hour urine collections for uric acid
 – Difficult to perform
 – May be useful in select cases (young patient, history of urolithiasis)
Treatment

Asymptomatic hyperuricemia → No treatment

Acute gout → Antiinflammatory Preventative

Chronic gout → Uric acid lowering therapy
Acute treatment

- NSAIDs
- Steroids
 - Intraarticular
 - Oral/IV
- ACTH
- Anakinra

- Colchicine
 - Never IV
 - Used prophylactically in intercritical periods
 - Toxicities: diarrhea (common), neuromyopathy, bone marrow suppression, hematologic abnormalities
 - Not dialyzable
Lowering uric acid

- Adjust offending medications (ex. diuretics)
- Weight loss
- Dietary adjustments
 - Less meat, seafood
 - Less alcohol (particularly beer)
 - Less fructose containing soft drinks
 - More dairy

- Purine rich foods
 - Beer, other alcoholic beverages.
 - Anchovies, sardines in oil, fish roes, herring
 - Yeast
 - Organ meat (liver, kidneys, sweetbreads)
 - Meat extracts, consomme, gravies
 - Mushrooms, spinach, asparagus, cauliflower, legumes (dried beans, peas) less associated with gout
Indications for uric acid lowering medication

- Tophaceous gout
- Erosive gout
- Unacceptably frequent attacks (>3-4/year)
- Nephrolithiasis
- Serum uric acid >12 with other risk factors for gout or nephrolithiasis

Goals: lower serum urate <6.0 (<5.0 if tophi)
- Should not be initiated during an acute flare
Treating undersecretion: uricosurics

- Suppress URAT1 -> decreases tubular reabsorption
- **Probenecid**
- (sulfinpyrazone, benzbromarone)
- Others: losartan, fenofibrate
- Limitations:
 - Require adequate GFR
 - Increases risk of uric acid stone formation/ urinary crystallization
 - Numerous drug-drug interactions (ampicillin, salicylates, indomethacin, heparin, etc.)
Treating overproduction
Allopurinol

• Purine analog of xanthine
• Competitive xanthine oxidase inhibitor
• Active metabolite = oxypurinol
• Potentiates azathioprine and warfarin
• Side effects:
 – Rash/toxic epidermolysis/Stevens Johnson syndrome
 – GI intolerance/liver enzyme elevation
 – Cytopenia
Allopurinol hypersensitivity syndrome

- Idiosyncratic; usually develops within first 3 months of initiation
- Fever, rash, hepatitis, interstitial nephritis, myocarditis, rhabdomyolysis, eosinophilia
- Incidence ~0.4%, mortality 25%
- Arellano, et al. 1993: ~75% of patients developing syndrome were receiving allopurinol for asymptomatic hyperuricemia
Renal dosing?

- Guidelines for dose adjustment in patients with renal insufficiency to minimize toxicity
- However,
 - Unclear if this is successful
 - Results in significant undertreatment of gout
- Recommend carefully advancing allopurinol as high as needed to lower serum urate
Other urate lowering therapies

• Febuxostat
 – Non-purine selective xanthine oxidase inhibitor
 – Hepatically metabolized -> ?safer in renal insufficiency
 – Side effects: transaminitis

• Uricase
 – Converts uric acid to allantoin
 – Prevents/manages tumor lysis syndrome
 – Infusion reactions; anti-uricase antibodies
Special instances of gout

• Organ transplant patients on cyclosporine
 – More likely to develop rapidly, be tophaceous, involve atypical joints
 – Steroid use may mask acute attacks despite accumulation of total body urate load

• Gout in young men (<25) or premenopausal women: likely genetic
CPPD disease

- Calcium pyrophosphate deposition disease
 - Pseudogout
 - Also pseudo-septic, pseudo-RA, pseudo-OA
- Associated with aging
- Also associated with
 - Hemochromatosis
 - Hyperparathyroidism
 - Hypomagnesemia/hypophosphatemia
 - Gout
 - Trauma
 - Hypothyroidism
Pseudogout

- Acute inflammatory attacks
- Asymptomatic in between
- Flares involve large joints: knees, shoulders, wrists, ankles
- Also can involve MCPs
- May take longer to reach peak intensity, longer to subside than gout
- Not due to uric acid
Diagnosis

- Joint aspiration
 - Crystals more rhomboid
 - Weakly positive birefringence

Source Undetermined
Chondrocalcinosis
CPPD arthritis
CPPD arthritis
Management of pseudogout

- NSAIDs
- Steroids
- Colchicine
- Treat associated disorders (hemachromatosis, hyperparathyroidism)
Other crystals: Hydroxyapatite
Additional Source Information
for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 5: Cecil Medicine, 23rd ed.
Slide 6: Seetha Monrad
Slide 7: Teng, Drugs, 2006
Slide 9: Cecil Medicine, 23rd ed.
Slide 12: Teng, 2006
Slide 13: Torpedo Extra IPA by Milletre, Flickr.com, http://www.flickr.com/photos/71781509@N00/3252864721
Slide 16: Arromdee, Drugs, 2002
Slide 17: Primer, 2008
Slide 18: Thomas Sydenham
Slide 24: Source Undetermined; Source Undetermined
Slide 25: American College of Rheumatology
Slide 27: Source Undetermined
Slide 29: Source Undetermined
Slide 30: American College of Rheumatology; American College of Rheumatology
Slide 31: Source Undetermined; Source Undetermined; Source Undetermined
Slide 32: American College of Rheumatology
Slide 39: Source Undetermined
Slide 47: Source Undetermined
Slide 49: Kelley’ s Textbook of Rheumatology (Both Images)
Slide 50: Source Undetermined
Slide 52: American College of Rheumatology; Source Undetermined