Author(s): Michael Hortsch, Ph.D., 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution–Non-commercial–Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC §105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Histology of the Urinary Tract

Michael Hortsch, Ph.D.
Department of Cell and Developmental Biology
University of Michigan
There are those who say that the human kidney was created to keep the blood pure, or more precisely, to keep our internal environment in an ideal balanced state. I would deny this. I grant that the human kidney is a marvelous organ, but I cannot grant that it was purposefully designed to excrete urine, or even to regulate the composition of the blood, or to subserve the physiological welfare of *Homo sapiens* in any sense. Rather I contend that the human kidney manufactures the kind of urine that it does, and it maintains the blood in the composition which that fluid has, because this kidney has a functional architecture; and it owes that architecture not to design or foresight or any plan, but to the fact that the earth is an unstable sphere with a fragile crust, to the geological revolutions that for 600 million years have raised and lowered continents and seas, to the predacious enemies, and heat and cold, and storms and droughts, the unending succession of vicissitudes that have driven the mutant vertebrates from sea into fresh water, into desiccated swamps, out upon the dry land, from one habitation to another, perpetually in search of the free and independent life, perpetually failing for one reason or another to find it.

Homer W. Smith, "Studies in the Physiology of the Kidney" (1939)
Objectives Renal Histology:

- Study the general organization of the kidney and how cortical and medullar structures relate to each other.
- Follow the blood supply distribution network throughout the kidney tissue.
- Define the **nephron** as the principle functional unit of the kidney.
- Learn about the different renal glomerular components and how they accomplish blood filtration.
- Discuss filtrate conditioning by the proximal convoluted tubules.
- Study the changes in the epithelial lining along the nephron and collecting tubules and how they tie into the physiological role of the kidney.
- Understand the organization and function of the different postglomerular blood vessels.
- Recognize the cellular components of the juxtaglomerular junctions and their physiological roles.
- Learn about the histological appearance of the ureter and bladder.
Kidney Functions:

• Filtration of most small molecules from blood plasma to form a filtrate.
• Selective reabsorption of most of the water and other molecules from the filtrate, leaving behind waste products to be secreted.
• Secretion of some excretory products directly into the filtrate (e.g., H\(^+\) by Na\(^+\)/H\(^+\) exchanger).
• Endocrine functions: Maintenance of blood pressure (renin-angiotensin-aldosterone system), synthesis of erythropoietin, and activation/hydroxylation of 25-OH vitamin D\(_3\) (Ca\(^{2+}\) metabolism).
The kidney is subdivided in lobes with medullary and cortical areas.
Medium magnification of a single kidney lobe: The medulla is characterized by long straight tubules, which extend into cortical areas. It has a triangular shape with the tip pointing to the hilum (medullary pyramid)
The **nephron** is the principle functional unit of the kidney. There are about 1.3 million nephrons in a normal human kidney. It consists of a ball-shaped **renal or Malpighian corpuscle**, which carries out blood filtration, and a long tubular part, which carries out filtrate conditioning and processing.
A cortical nephron would be here in the outer part of the kidney, while a cortico medullary nephron would be here in the inner part, closer to the medulla.
Arteriogram of a human kidney: Blood supply and drainage is via the hialum by the renal artery and the renal vein, respectively.
Interlobar arteries split at the cortico-medullary junction into arcuate arteries. Arcuate arteries branch into interlobular arteries, intralobular arteries, which both supply afferent arterioles.

1. Renal pyramid
2. Interlobar artery
3. Renal artery
4. Renal vein
5. Renal hylum
6. Renal pelvis
7. Ureter
8. Minor calyx
9. Renal capsule
10. Inferior renal capsule
11. Superior renal capsule
12. Interlobar vein
13. Nephron
14. Minor calyx
15. Major calyx
16. Renal papilla
17. Renal column
Blood filtration takes place in the renal corpuscle through the walls of the capillaries in the renal corpuscle. The residual blood components are drained by the efferent arteriole.
The capillary system of a renal corpuscle is called the **glomerulus**.
Scanning electron micrograph of a cast of several glomeruli
Blood supply of a glomerulus is supplied by the afferent arteriole and drained by the efferent arteriole. Both arterioles enter/exit the renal corpuscle at the vascular pole.
The renal blood filtration barrier consists of a specialized basement membrane and two cellular components, the fenestrated (diameter 50-100 nm) capillary endothelium and the podocytes.
Extensions of the podocyte cell, called pedicels, wrap around the capillary system of the glomeruli.
Artistic illustration of the renal filtration barrier
The pedicels of the podocytes form filtration slits, which are on average about 25 nm wide.
The renal filtration basement membrane is 240-350 nm thick and is produced by both by podocytes and capillary endothelial cells. It is rich in negatively charged glycoproteins. Since it is a double basement membrane, it contains two lamina rara layers. It will exclude particles larger than 10 nm and 60,000 to 70,000 Daltons in size.
Electron micrograph of the renal filtration barrier
Mesangial cells maintain the glomerular basement membrane and also contribute to its formation.
Electron micrograph micrograph of a mesangial cell.

In response to angiotensin II the extensions of mesangial cells contract and reduce the blood flow through the glomerular capillaries. Atrial natriuretic peptide (ANP) causes mesangial cells to relax.
Bowman’s capsule has a visceral (podocyte layer) and a parietal cell layer (simple squamous epithelium). The primary filtration product is collected between the two layers in the urinary space and is drained from the renal corpuscle at the urinary pole.
At the urinary pole starts the proximal convoluted tubular system (PCT).
The PCT system has a simple cuboidal epithelium, that contains a characteristic apical brush border.
The PCT section is the longest subregion of the nephron tubular system (in humans about 15 mm). Therefore, in the cortex most cross-sections of tubules will represent PCT.
This electron micrograph shows the characteristic brush border and numerous mitochondria that provide energy for various pump and salvage processes.
The PCT epithelium is sealed by **tight junctions**. Salt and small nutrient molecules are transported to the basal aspect of the epithelium. The basolateral plasma membrane is enriched in Na\(^+\)/K\(^+\)-ATPase complexes, which act as sodium pumps.
The initial and the last segment of the Henle’s loop is lined by a simple cuboidal epithelium.

The middle segment or thin limb of Henle’s loop is lined by a simple squamous epithelium.

Transverse section of pyramidal substance of kidney of pig, the bloodvessels of which are injected. a. Large collecting tube, cut across, lined with cylindrical epithelium. b. Branch of collecting tube, cut across, lined with cubical epithelium. c, d. Henle’s loops cut across. e. Bloodvessels cut across. D. Connective tissue ground substance.
The PCT turns into the loop of Henle and continues downwards into the medulla. The initial segment is the straight descending thick limb (simple cuboidal epithelium with an apical brush border). Around the outer part of the medulla it abruptly changes into the thin descending limb, losing its brush border and turning into a simple squamous epithelium.
The thin limb of the loop of Henle has a similar appearance as blood capillaries.
In the medulla the thin limb of the loop of Henle makes a turn back towards the renal corpuscle at the beginning of the nephron.
Histological differences between the outer and the inner (deep) medulla

Japanese slide set (Humio Mizoguti, Department of Anatomy, Kobe University School of Medicine, Slides #454 and #458)
The Distal Convoluted Tubule (DCT) is shorter (about 5 mm in humans) than the PCT segment and has no apical brush border.
PCT = Proximal Convoluted Tubule
DCT = Distal Convoluted Tubule
DCT from several nephrons release the processed filtrate into collecting tubules, which merge to form collecting ducts.

Transverse section of pyramidal substance of kidney of pig, the bloodvessels of which are injected. a. Large collecting tube, cut across, lined with cylindrical epithelium. b. Branch of collecting tube, cut across, lined with cubical epithelium. c, d. Henle’s loops cut across. e. Bloodvessels cut across. D. Connective tissue ground substance.
Collecting tubules can be recognized by a clear lateral demarcation between neighboring epithelial cells.

In contrast to the other tubular parts of the nephron, lateral membrane infoldings and interdigitations are missing, making the lateral cell contacts more visible.
Collecting ducts are formed by the fusion of collecting tubules and extend towards the renal papilla and the renal calyx.
The large collecting ducts at the tip of the medullary pyramid are referred to as the ducts of Bellini. The final processed filtration product is collecting in the major calyces.
Changes of the lining epithelium along the nephron and the collecting tubules/ducts.
Flow of the renal filtration fluid and selective removal of salt and water creates an osmolarity gradient between cortical and medullar regions. This is called the counter-current multiplier system.
Aldosterone increases sodium uptake in the DCT. ADH (Antidiuretic hormone) regulates the water permeability of the distal part of the nephron and thereby influences the volume and concentration of the final filtration product.
The efferent arterioles split into a second capillary system, the **peritubular network**, which nourishes and supplies the convoluted tubules. The **peritubular capillary endothelial cells** are also a source of **erythropoietin**.

Cortico-medullary nephrons also extend a capillary branch deep into the medulla. These capillaries are called the **vasa recta** system.
The vasa recta capillaries follow the collecting tubules/ducts into the deep medulla.
The vasa recta capillaries pass through a region of high osmolarity. This results in an exchange of blood fluid/water. This is called the counter-current exchange system.

300 mOs

1200 mOs

Human Histology, 2nd edition, 1997, Stevens and Lowe, Mosby Fig 15.25
The juxtaglomerular complex (shown by D) has important control and regulation functions.
The DCT passes between the afferent and efferent arteriole at the vascular pole of the renal corpuscle. A thickening in the DCT epithelium signifies the macular densa. The macula densa regulates mesangial and juxtaglomerular cells and thereby influences the blood flow through the glomerular network and the blood pressure and the renin-angiotensin system (see next slides).
Specialized smooth muscle cells in the afferent arteriolar wall (called juxtaglomerular cells) produce the hormone renin as shown in this immunocytochemical micrograph. Renin or angiotensinogenase is an enzyme with a proteolytic activity that cleaves angiotensinogen into angiotensin I.
Renin secretion is triggered by ATP release from the macular densa. It induces the activation of angiotensin, which in turn induces the release of aldosterone, resulting in sodium and water retention in the kidney.
The ureter is lined by a transitional epithelium and has a rather disorganized smooth muscle layer.
Relaxed transitional epithelium

Distended transitional epithelium
Relaxed transitional epithelium

Distended transitional epithelium
Similarly, the bladder is lined by a transitional epithelium and has three rather unorganized smooth muscle layers.
Slide 4: National Library of Medicine

Slide 8: Wheater’s Functional Histology, 4th edition, 2000, Young and Heath, Churchill Livingstone Elsevier Fig 16.5

Slide 9: “Marcello Malpighi”, Source Undetermined; “Nephron”, Gray’s Anatomy

Slide 11: Histology – A Text and Atlas, 5th edition, 2006, Ross and Pawlina, Lippincott Williams and Wilkins Fig 20.6

Slide 13: Gray’s Anatomy

Slide 16: Wheater’s Functional Histology, 4th edition, 2000, Young and Heath, Churchill Livingstone Elsevier Fig 16.10

Slide 17: Color Atlas of Histology, 1992, Erlandsen and Magney, Mosby Book Fig 18-8

Slide 18: Color Atlas of Histology, 1992, Erlandsen and Magney, Mosby Book Fig 18-10

Slide 22: “Concise Histology” by Fawcett and Jensh, 1997, Chapman & Hall Fig 21-8

Slide 24: Cell and Tissue Ultrastructure – A Functional Perspective, 1993, Cross and Mercer, Freeman and Co. Fig. page 325

Slide 26: Color Atlas of Basic Histology, 1993, Berman, Appelton and Lange Fig 16-8

Slide 28: Color Atlas of Basic Histology, 1993, Berman, Appelton and Lange Fig 16-7

Slide 29: Cell and Tissue Ultrastructure – A Functional Perspective; 1993, Cross and Mercer, Freeman and Co.page 329

Slide 30: Source Undetermined

Slide 34: Color Atlas of Histology, 1992, Erlandsen and Magney, Mosby Book Fig 18-18

Slide 35: Gray’s Anatomy; Japanese slide set (Humio Mizoguti, Department of Anatomy, Kobe University School of Medicine, Slides #454 and #458

Slide 37: Wheater’s Functional Histology, 3rd edition, 1993, Burkitt, Young, and Heath, Churchill Livingstone, Fig 16.18b

Slide 39: Color Atlas of Basic Histology, 1993, Berman, Appelton and Lange, Fig 16-13

Slide 40: Color Atlas of Basic Histology, 1993, Berman, Appelton and Lange Fig 16-14

Slide 43: Human Histology, 2nd edition, 1997, Stevens and Lowe, Mosby Fig 15.20

Slide 44: Wheater’s Functional Histology; 4th edition, 2000, Young and Heath; Churchill Livingstone Elsevier Fig. 16.21

Slide 45: Human Histology, 2nd edition, 1997, Stevens and Lowe, Mosby Fig 15.4a

Slide 47: Human Histology, 2nd edition, 1997, Stevens and Lowe, Mosby Fig 15.25

Slide 49: Human Histology, 2nd edition, 1997, Stevens and Lowe, Mosby, Fig 15.28b

Slide 50: National Library of Medicine, Color Atlas of Histology, 1992, Erlandsen and Magney, Mosby Book Fig 18-20

Slide 52: Color Atlas of Basic Histology, 1993, Berman, Appelton and Lange Fig 16-17

Slide 53: Michigan Medical Histology Slide Collection Slide 212; Michigan Medical Histology Slide Collection Slide 19-1

Slide 54: Source Undetermined all

Slide 55: Color Atlas of Basic Histology, 1993, Berman, Appelton and Lange, Fig 16-18