Author: Robert Lyons, Ph.D., 2008

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution – Share Alike 3.0 License:
http://creativecommons.org/licenses/by-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government:** Works that are produced by the U.S. Government. (17 USC §105)
- **Public Domain – Expired:** Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated:** Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible:** Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ.

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use:** Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ.

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
M1 Renal:
Nitrogen Metabolism (and Related Topics)

- Amino Acid Metabolism (Nitrogen metabolism)
- Folate Metabolism (“One-Carbon pathways”)
- Nucleotide Metabolism

Dr. Robert Lyons
Assistant Professor, Biological Chemistry
Director, DNA Sequencing Core
Web: http://seqcore.brcf.med.umich.edu/mcb500

Fall 2008
Amino Acid Metabolism (Nitrogen Metabolism) Dec 12-14 2006 Dr. Robert Lyons

See: http://seqcore.brcf.med.umich.edu/mcb500 for supplementary (non-required) course materials.

Medical relevance of amino acid metabolism pathways:
What is nitrogen balance, and what affects it?
Role of vitamins: pyridoxamine (VitB6), folic acid
Understanding a critical function of the liver: nitrogen metabolism
Which amino acids are essential?
Inborn errors of metabolism: amino acid breakdown, urea cycle
Pharmacologic manipulation of neurotransmitters (e.g. Parkinson’s Syndrome)

I. Protein degradation/Nitrogen balance

A. Cells constantly turn over proteins

It’s a normal process, balanced by protein intake.
Proteins can be degraded if they are:
...
Amino Acid metabolism

Glu, Gln, Asp, NH$_3$

Urea

Folate metabolism

Methylene

THF

Met Cycle

oxaloacetate

fumarate

TCA Cycle

Nucleic Acid metabolism

Purines

DNA

RNA

Pyrimidines

Uric Acid

(energy)
Protein Degradation:

- Endogenous proteins degrade continuously
 - Damaged
 - Mis-folded
 - Un-needed
- Dietary protein intake - mostly degraded

Nitrogen Balance - expresses the patient’s current status - are they gaining or losing net Nitrogen?
Transaminases Collect Amines

General reaction overview:

\[\text{R}_1\text{C} - \text{COO}^{(-)} + \text{R}_2\text{C} - \text{COO}^{(-)} \quad \text{α-keto acid (typically α-ketoglutarate)} \]

Details of reaction mechanism:

\[\text{H} \quad \text{R-C-COO}^{(-)} \quad \text{NH}_2 \quad + \quad \text{O} \quad \text{CH} \quad \text{H}_2\text{O} \quad \rightarrow \quad \text{H} \quad \text{R-C-COO}^{(-)} \quad \text{N} \quad \text{H} \quad \text{R-C-COO}^{(-)} \quad \text{R-C-COO}^{(-)} \quad \text{R-C-COO}^{(-)} \quad \alpha\text{-keto acid} \quad \text{pyridoxal phosphate} \quad \text{pyridoxamine phosphate} \]
Transfer the amine back to an acceptor α-keto acid

pyridoxamine phosphate + α-keto acid \rightarrow pyridoxal phosphate + amino acid
In peripheral tissues, transaminases *tend* to form Glutamate when they catabolize amino acids.

In other words, alpha-ketoglutarate is the preferred acceptor, and Glutamate is the resulting amino acid:

\[
\text{Some amino acid} + \alpha\text{-ketoglutarate} \rightarrow \text{some alpha keto acid} + \text{Glutamate}
\]
Glutamate can donate its amines to form other amino acids as needed

A specific example - production of Aspartate in liver (described a few slides from now):

Glutamate + oxaloacetate \rightarrow α-ketoglutarate + aspartate
Getting Amines Into the Liver

Glutamate Dehydrogenase:

\[
\text{glutamate} \rightarrow \text{NAD(P)H} \rightarrow \alpha\text{-ketoglutarate} + \text{ammonia} \]

Glutamine Synthetase:

\[
\text{glutamate} + \text{NH}_3 + \text{ATP} \rightarrow \text{glutamine} + \text{ADP} + \text{Pi} \]
In the Liver: Precursors for Urea Cycle

Glutamine is hydrolyzed to glutamate and ammonia:

\[
\begin{align*}
\text{Glutamine} & \rightarrow \text{Glutamate} + \text{NH}_3 \\
H_2C(OOC)CH(NH_2) & \rightarrow H_2C(OOC)CH_2NH_3^+ + \text{NH}_3
\end{align*}
\]

Ammonia can also be formed by the glutamate dehydrogenase reaction and several other reactions as well.

Glutamate donates its amino group to form aspartate:

Glutamate-aspaltate aminotransferase:

\[
\begin{align*}
\text{Glutamate} + \text{Oxaloacetate} & \rightarrow \text{Aspartate} + \alpha\text{-Ketogluutarate} \\
(-)^{14}O_2CCH_2CH_2(OOC)NH_2 & + (-)^{14}O_2CCH_2C(O)CO_2 \rightarrow (-)^{14}O_2CCH_2CH_2(OOC)NH_2 + (-)^{14}O_2CCH_2C(O)CO_2 + \text{NH}_2
\end{align*}
\]
Carbamoyl phosphate synthetase I

bicarbonate + ATP → carbonyl phosphate + ADP

carbonyl phosphate + NH₃ → carbamate + Pi

carbamate + ATP → carbamoyl phosphate + ADP
Ornithine Transcarbamoylase

Carbamoyl phosphate

Ornithine

Citrulline

R. Lyons
Argininosuccinate synthetase

\[
\begin{align*}
\text{Argininosuccinate} & \rightarrow \text{Citrulline} \\
\text{ATP} & \rightarrow \text{AMP} + \text{PP}_i
\end{align*}
\]
Argininosuccinate lyase

Argininosuccinate \rightarrow Arginine \rightarrow Fumarate

R. Lyons
Arginase

Arginine $\xrightarrow{\text{H}_2\text{O}}$ Ornithine

H_2O

Urea

R. Lyons
Liver mitochondrion

Liver cytoplasm

2ATP + HCO₃⁻ + NH₄⁺ → Carbamoyl phosphate

2ADP + Pᵢ → Ornithine

Ornithine + Citrulline → Urea

Argininosuccinate → Fumarate

Arginine → Aspartate
Urea Cycle Connects to TCA Cycle

Urea Cycle:
- Ornithine
- Arginine
- Citrulline
- Argininosuccinate

TCA Cycle:
- Oxaloacetate
- Malate
- Fumarate
- α-Ketoglutarate
- Citrate

Aspartate:
- $(-)\text{C}_2\text{H}_4\text{C}-\text{CO}_2\text{(-)}$
- NH_2

Fumarate:
- $(-)\text{C}_2\text{H}_4\text{C}-\text{CO}_2\text{(-)}$
- H
Getting Amines Into the Liver

Glutamate Dehydrogenase:

\[
\text{glutamate} \xrightarrow{\text{NAD(P)}} \text{NAD(P)H} \xrightarrow{\text{mito}} \alpha\text{-ketoglutarate} + \text{ammonia}
\]

Glutamine Synthetase:

\[
\text{glutamate} \xrightarrow{\text{ATP} + \text{NH}_3} \text{glutamine}
\]

\[
\text{glutamate} \xrightarrow{\text{ADP} + P_i} \text{glutamine}
\]
CPS I is Stimulated by NAG

\[
\begin{align*}
(-) \quad & \quad \text{glutamate} \\
\text{N-acetyl glutamate (NAG)} \\
\end{align*}
\]

(repeating the figure from page 3 of your handout)
Muscle

Glucose → Pyruvate

Glutamate → α-ketoglutarate

Alanine

(Amines)

Amino acids

Liver

Glucose → Pyruvate

Glutamate → NH₃

Urea

Alanine → α-ketoglutarate

blood transport
Complicating the picture: Other tissues may be involved
Why is Ammonia Toxic?
Why is Ammonia Toxic?

- Possible neurotoxic effects on glutamate levels (and also GABA)

 (due to shifting equilibria of reactions involving these compounds)
Why is Ammonia Toxic?

• Possible neurotoxic effects on glutamate levels (and also GABA) (due to shifting equilibria of reactions involving these compounds)

• Possible metabolic/energetics effects:
 - alpha-ketoglutarate levels
 - glutamate levels
 - glutamine
Inherited Defects of Urea Cycle Enzymes: Diagnosis

Defects are diagnosed based on the metabolites seen in the blood and/or urine.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPSD</td>
<td>No elevation except ammonia; diagnosed by elimination.</td>
</tr>
<tr>
<td>OTCD</td>
<td>Elevated CP causes synthesis of Orotate</td>
</tr>
<tr>
<td>ASD</td>
<td>Elevated citrulline</td>
</tr>
<tr>
<td>ALD</td>
<td>Elevated argininosuccinate</td>
</tr>
<tr>
<td>AD</td>
<td>Elevated arginine</td>
</tr>
</tbody>
</table>
CPS I is Stimulated by NAG

\[
\begin{align*}
\text{glutamate} & \quad + \quad \text{N-acetyl glutamate synthetase} & \quad \text{N-acetyl glutamate (NAG)} \\
\text{acetyl CoA} &
\end{align*}
\]

(repeating the figure from page 3 of your handout)
Liver mitochondrion

Liver cytoplasm

Ornithine

Citrulline

Argininosuccinate

Fumarate

Arginine

Urea

HCO$_3^-$

NH$_3$

2ATP + HCO$_3^-$ + NH$_3$ → Carbamoyl phosphate

2ADP + P$_i$ + ATP

Ornithine

Citrulline

Arginino succinate

Fumarate

NH$_2$-OPO$_4^{3-}$

L. Lyons
Clinical Management of Urea Cycle Defects

- Dialysis to remove ammonia
- Provide the patient with alternative ways to excrete nitrogenous compounds:
 * Intravenous sodium benzoate or phenylacetate
 * Supplemental arginine
- Levulose - acidifies the gut
- Low protein diet
Degrading the Amino Acid Carbon Backbone
Easily-degraded products after transamination:

\[\text{Glutamine} \xrightarrow{\text{glutaminase}} \text{glutamate} \quad \text{asparagine} \xrightarrow{\text{asparaginase}} \text{aspartate} \]

We also already know how to degrade Glutamine:

\[\text{Glutamine} \xrightarrow{\text{glutaminase}} \text{glutamate} + \text{ammonia} \]

...and by analogy, how to degrade Asparagine:

\[\text{Asparagine} \xrightarrow{\text{asparaginase}} \text{aspartate} + \text{ammonia} \]
Amino Acids are categorized as ‘Glucogenic’ or ‘ketogenic’ or both.

Many amino acids are purely glucogenic:
Glutamate, aspartate, alanine, glutamine, asparagine,…

Some amino acids are both gluco- and ketogenic:
Threonine, isoleucine, phenylalanine, tyrosine, tryptophan

The only PURELY ketogenic Amino Acids:
leucine, lysine
Amino acids with 5-carbon backbones tend to form α-ketoglutarate
Degradation and Biosynthesis of Serine and Glycine

Glycine Synthase:

\[
\text{Glycine Synthase:} \quad \text{H} \quad \text{NH}_3^{(+)} \quad \text{THF} \quad \text{N}^5-N^{10}-\text{methylene} \quad \text{THF}
\]

Serine Hydroxymethyltransferase:

\[
\text{Serine Hydroxymethyltransferase:} \quad \text{H}_2\text{O} \quad \text{H} \quad \text{NH}_3^{(+)} \quad \text{THF} \quad \text{N}^5-N^{10}-\text{methylene} \quad \text{THF} \quad \text{Glycine}
\]

Serine Dehydratase:

\[
\text{Serine Dehydratase:} \quad \text{H}_2\text{O} \quad \text{H} \quad \text{NH}_3^{(+)} \quad \text{THF} \quad \text{N}^5-N^{10}-\text{methylene} \quad \text{THF} \quad \text{Glycine}
\]
Methionine Cycle
And Biological Methyl Groups

Methionine
1. $\text{CH}_3\text{SCH}_2\text{CH}_2\text{COO}^(-)$
2. $\text{ATP} + \text{H}_2\text{O}$ \rightarrow $\text{PPi} + \text{Pi}$

S-Adenosyl Methionine
1. $\text{CH}_3\text{SCH}_2\text{CH}_2\text{COO}^(-)$
2. Adenine

Homocysteine
1. $\text{HSCH}_2\text{CH}_2\text{COO}^(-)$

S-Adenosyl Homocysteine
1. $\text{HSCH}_2\text{CH}_2\text{COO}^(-)$

Serine
1. $\text{HOCH}_2\text{C}^\text{OH}$

Cysteine
1. $\text{HSCH}_2\text{CH}_2\text{COO}^(-)$

(Remainder of homocysteine degraded for energy)
Phenylalanine and Tyrosine
(Normal path shown in black, pathological reaction shown in red)

Phenylalanine

\(\text{CH}_2\text{CH} \text{NH}_3 \text{COO} \)

(+)

Tetrahydrobiopterin + O\(_2\)

Dihydrobiopterin + H\(_2\)O

Enzyme: Phenylalanine hydroxylase

Tyrosine

\(\text{HO-CH}_2\text{CH} \text{COO} \)

(+)

NH\(_3\)

Enzyme: Homogentisate dioxygenase

Homogentisate

Deficiency: Alkaptonuria “Ochronosis”

Phenylketonuria (no phenylalanine hydroxylase)

Phenylpyruvate

(you don’t need to know the rest)

Phenylpyruvate
Branched Chain Amino Acids

Isol cune

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH} & __\text{CH} __\text{COO}^{(-)} \\
\text{CH}_3 & \text{NH}^{(+)}_3
\end{align*}
\]

\[\alpha-KG\]

\[\text{Glu}\]

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH} & __\text{C} __\text{COO}^{(-)} \\
\text{CH}_3
\end{align*}
\]

\[\text{NAD}^+\text{CoASH}\]

\[\text{NADH} + 2\text{CO}\

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH} & __\text{C} __\text{S-CoA} \\
\text{CH}_3
\end{align*}
\]

--- Branched-chain \(\alpha\)-keto acid dehydrogenase ---

\[
\begin{align*}
\text{CH}_3\text{CH}_2\text{CH} & __\text{C} __\text{S-CoA} \\
\text{CH}_3
\end{align*}
\]

\[\text{NADH} + \text{CO}_2\]

(continues on to degradation path similar to \(\beta\)-oxidation of fatty acids)
Synthesis of Bioactive Amines

Tyrosine $\xrightarrow{\text{Tyrosine hydroxylase}}$ Dihydroxyphenylalanine (L-DOPA)

Dihydroxyphenylalanine \rightarrow Dopamine \rightarrow Norepinephrine \rightarrow Epinephrine
Synthesis of Bioactive Amines

Tryptophan \[\rightarrow\] NAD⁺

Tryptophan hydroxylase \[\rightarrow\] 5-hydroxytryptophan

PLP-dependent decarboxylation \[\rightarrow\] Serotonin
Synthesis of Bioactive Amines

Glutamate (PLP-dependent) → GABA

Histidine (PLP-dependent) → Histamine
NON-Essential Amino Acids:

Glutamate, aspartate, alanine, glutamine, asparagine, (proline), glycine, serine (cysteine, tyrosine)

Essential Amino Acids:

Arginine (!), phenylalanine, methionine, histidine, Isoleucine, leucine, valine, threonine, tryptophan, lysine
Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy