Citation Key
for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt

- Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
- Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
- Creative Commons – Zero Waiver
- Creative Commons – Attribution License
- Creative Commons – Attribution Share Alike License
- Creative Commons – Attribution Noncommercial License
- Creative Commons – Attribution Noncommercial Share Alike License
- GNU – Free Documentation License

Make Your Own Assessment

- Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

- Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ*

 Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

 To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Medicare relevance of the one-carbon pathways

Mechanism of antibiotics
 Sulfa drugs - antibacterial
 Trimethoprim, pyrimethamin - antibacterial, antimalarial

Pathologies
 VitB₁₂ deficiency/pernicious anemia
 dietary folate deficiency
 sprue
 (See also the Nucleic Acid lectures for anti-cancer chemotherapies)

I. Tetrahydrofolate as a carrier of one-carbon units

A. Obtaining folate - an essential vitamin

1. Dietary sources (green veggies, fortified cereals, liver) provide folic acid. Cleaved by enzyme 'conjugase' to remove extra glutamate residues, absorbed, reduced to dihydrofolate, then to tetrahydrofolate by Dihydrofolate Reductase (DHFR).

DHFR inhibitors are useful antibiotics if they affect other organisms but not humans.

2. Inhibitors of DHFR are used therapeutically: e.g. methotrexate (cancer chemotherapy). Tumors that resist methotrexate sometimes have amplified the DHFR gene to compensate for the inhibitor.
3. Compounds that inhibit bacterial folate biosynthesis can be excellent antibiotics. Example: sulfa drugs like sulfanilamide:

![Para-aminobenzoic acid (PABA)](image)

![sulfanilamide](image)

B. Main entry of one-carbon units - N^5, N^{10} methylene tetrahydrofolate

1) Serine conversion to glycine:

![Tetrahydrofolate](image)

![serine](image)

![glycine](image)

![N5, N10 methylene tetrahydrofolate](image)

2) Glycine conversion to CO$_2$ and NH$_4^+$:

![Tetrahydrofolate](image)

![glycine](image)

![N5, N10 methylene tetrahydrofolate](image)

C. Oxidation states of the one-carbon unit and inter-conversions (reversible reactions indicated by double-ended arrows)
II. S-adenosylmethionine ('SAM', aka 'AdoMet') Overview:
A. Biosynthesis of methionine
(see also the Amino Acid Metabolism handout)

B. Re-utilization of folates:
C. Synthesis of S-Adenosyl Methionine

\[
\begin{align*}
\text{methionine} & \quad \xrightarrow{\text{ATP, PP}_{1} \cdot P_{1}} \quad \text{S-adenosyl methionine} \\
\text{methionine} & \quad \xrightarrow{\text{ATP, PP}_{1} \cdot P_{1}} \quad \text{S-adenosyl methionine}
\end{align*}
\]

D. Uses of SAM - biological methylator

Example: Conversion of norepinephrine to epinephrine:

\[
\begin{align*}
\text{Norepinephrine} & \quad \xrightarrow{S\text{AM}} \quad \text{Epinephrine} \\
\text{Norepinephrine} & \quad \xrightarrow{S\text{AM}} \quad \text{Epinephrine}
\end{align*}
\]

Others: Conversion of phosphatidylethanolamine to phosphatidylcholine, methylation of mRNA and DNA

E. AdoMet cycle
III. Pathologies:

A. Folate deficiency is common. symptom: megaloblastic anemia
 weakness, anemia, anorexia
 Appearance of large, immature erythrocytes ('megaloblasts') in the blood

B. several causes:

 - dietary deficiency common
 - alcoholism may compound folate deficiency
 - inability to absorb folates (e.g. tropical sprue and non-tropical or celiac sprue)

Dietary folates are typically poly-glutamated (up to 6 γ-glutamyl residues)
We can absorb only the mono-glutamyl form
An enzyme 'conjugase' secreted by the brush border cells of the intestine
hydrolytically removes the extra glu residues so we can absorb the folate
Intestinal irritation can compromise production of conjugase

 - possibly secondary to B12 deficiency: pernicious anemia
'Methyl trap' hypothesis and deficiency of vitamin B12:

B12 deficiency can be caused by autoimmune response to 'Intrinsic Factor', a product of the gut that aids in the absorption of B12.