open.michigan

Author(s): Dr. Robert Lyons, 2009

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution – Share Alike 3.0 License**: http:// creativecommons.org/licenses/by-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/education/about/terms-of-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

Citation Key

for more information see: http://open.umich.edu/wiki/CitationPolicy

Use + Share + Adapt	
{ Content the	copyright holder, author, or law permits you to use, share and adapt. }
Ø PD-GOV	Public Domain – Government: Works that are produced by the U.S. Government. (17 USC §105)
Ø PO-EXP	Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
Ø PO-SELF	Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
(c)) 2880	Creative Commons – Zero Waiver
(C) 87	Creative Commons – Attribution License
(C) BY-SA	Creative Commons – Attribution Share Alike License
(C) BY-NC	Creative Commons – Attribution Noncommercial License
(BY-NC-SA	Creative Commons – Attribution Noncommercial Share Alike License
GNU-FDL	GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.

M1 Renal: Nucleotide Metabolism

Dr. Robert Lyons Assistant Professor, Biological Chemistry Director, DNA Sequencing Core

Web: <u>http://seqcore.brcf.med.umich.edu/mcb500</u>

Fall 2008

R. Lyons

Nucleic Acid metabolism

Click on any blue rectangle to see details.

R. Lyons

Formation of PRPP: Phosphoribose pyrophosphate

PRPP Use in Purine Biosynthesis:

Nucleoside Monophosphate Kinases

AMP + ATP <--> 2ADP (adenylate kinase)

GMP + **ATP** <---> **GDP** + **ADP** (guanylate kinase)

• similar enzymes specific for each nucleotide

• no specificity for ribonucleotide vs. deoxyribonucleotide

Ribonucleotide Reductase

Hydroxyurea inhibits this enzyme: chemotherapeutic use

O || HONH⁻C⁻NH₂

Regulation of Ribonucleotide Reductase

Nucleoside Diphosphate Kinase

$N_1DP + N_2TP \iff N_1TP + N_2DP$

$dN_1DP + N_2TP \iff dN_1TP + N_2DP$

- No specificity for base
- No specificity for ribo vs deoxy

R. Lyons

R. Lyons

Degradation of the Purine Nucleosides:

R. Lyons

"Salvage" Pathways for Purine Nucleotides

APRT - Adenine phosphoribosyl transferase - performs a similar function with adenine.

Adenosine Deaminase Deficiency:

R. Lyons

Hypoxanthine

Xanthine

Gout: deposition of urate crystals in joints, "tophi" in cooler periphery

Hyperuricemia can be caused by:

Accelerated degradation of purines:

Accelerated synthesis of purinesIncreased dietary intake of purines

Impaired renal clearance of uric acid

Allopurinol inhibits xanthine oxidase and reduces blood uric acid levels:

Allopurinol

An 80-year-old man with a 30-year history of gout, this patient had been treated intermittently to reduce his serum urate levels.

The New England Journal of Medicine

Lesch-Nyhan Syndrome: Defective HGPRT

- hyperuricemia
- spasticity
- mental retardation
- self-mutilation behavior

A defect in APRT does NOT have similar consequences

Myoadenylate Deaminase 'Fills' the TCA Cycle in Muscle

Carbamoyl phosphate synthetase II - a cytoplasmic enzyme...

R. Lyons

...used for pyrimidine synthesis

Orotate is linked to PRPP to form Uridine monophosphate:

Newly-synthesized uridine monophosphate will be phosphorylated to UDP and UTP, as described for the purine nucleotides.

UTP can be converted to CTP by CTP Synthetase:

Some UDP is converted to dUDP via ribonucleotide reductase.

The Thymidylate Synthase Reaction:

Methotrexate Inhibits Dihydrofolate Reductase:

Dihydrofolate builds up, levels of THF become limiting, thymidylate synthase is unable to proceed. Follow it with a dose of Leucovorin, a.k.a. formyl-THF.

FdUMP Inhibits The Thymidylate Synthase Reaction:

Complicated Pathways for Pyrimidine Production:

This figure is primarily a study aid; you do not need to memorize it or reproduce it. The information here merely summarizes material from previous sections.

Pathologies of pyrimidine nucleotide biosynthesis:

Orotic acidurea due to OTC deficiency - please review your Urea Cycle notes.

Hereditary orotic acidurea - deficiency of the enzyme that convert orotate to OMP to UMP. Not common.

Pyrimidine degradation:

Cytidine deaminase converts cytidine to uridine

Degradation of the base proceeds (products are unimportant here)

Pyrimidines can be salvaged as well:

Enzyme: Pyrimidine nucleoside phosphorylases Thymine + deoxyribose-1-phosphate --> thymidine (NOT thymidine monophosphate!)

Enzyme: Thymidine kinase - adds the monophosphate back Thymidine + ATP --> thymidine monophosphate

Herpes Simplex Virus carries its own tk gene

Certain drugs act via the pyrimidine salvage pathway:

5-FU efficacy depends on rate of degradation vs activation

Degradation (via dihydropyrimidine dehydrogenase, DPD

DPD inhibitors can potentiate 5FU activity

Capecitabine mode of action:

Cytosine arabinoside (araC) activation and inactivation:

Additional Source Information

for more information see: http://open.umich.edu/wiki/CitationPolicy

Slide 4: Robert Lyons
Slide 5: Robert Lyons
Slide 6: Robert Lyons
Slide 7: Robert Lyons
Slide 9: Robert Lyons
Slide 10: Robert Lyons
Slide 12: Robert Lyons
Slide 13: Robert Lyons
Slide 14: Robert Lyons
Slide 15: Robert Lyons
Slide 16: Robert Lyons
Slide 17: Robert Lyons
Slide 18: Robert Lyons
Slide 19: Robert Lyons
Slide 20: The New England Journal of Medicine, <u>http://content.nejm.org/cgi/content/full/353/23/e20</u>
Slide 21: Robert Lyons
Slide 22: Robert Lyons
Slide 24: Robert Lyons
Slide 25: Robert Lyons
Slide 26: Robert Lyons
Slide 27: Robert Lyons
Slide 28: Robert Lyons
Slide 30: Robert Lyons
Slide 22: Debart Lyone
Slide 52. Robert Lyons
Slide 33: Robert Lyons
Slide 32: Robert Lyons Slide 34: Robert Lyons
Slide 32: Robert Lyons Slide 34: Robert Lyons Slide 35: Robert Lyons