Project: Ghana Emergency Medicine Collaborative

Document Title: Rapid Sequence Intubation & Emergency Airway Support in the Pediatric Emergency Department

Author(s): Michele Nypaver (University of Michigan), MD, 2009

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike-3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. These lectures have been modified in the process of making a publicly shareable version. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/privacy-and-terms-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Rapid Sequence Intubation & Emergency Airway Support in the Pediatric Emergency Dept.

Michele M. Nypaver, MD
UMHS Pediatric Emergency Medicine Fellowship Lecture Series
July 2009
Objectives

- Basics Review
- The 7 P’s of RSI
- RSI Pharmacology
- Procedure
- Indications/Complications of RSI
- Advanced Airway options
- Resources for skill maintenance and help
Definitions

Rapid Sequence Intubation:

• Describes a sequential process of preparation, sedation, and paralysis to facilitate safe, emergent tracheal intubation.

• Pharmacologic sedation and paralysis are induced in rapid succession to quickly and effectively perform laryngoscopy and tracheal intubation.

• At the same time, careful preparation (including pre-oxygenation) and the use of specific techniques (such as applying cricoid pressure and avoiding positive pressure ventilation) minimize the risks of hypoxia and aspiration.

• Assuming a patient with full stomach.
The Evidence for RSI

“NEAR” data: n=156 pediatric intubations

Success Rates for intubation

<table>
<thead>
<tr>
<th>METHOD</th>
<th>FREQ. (%)</th>
<th>FIRST ATTEMPT (%)</th>
<th>FIRST PERSON (%)</th>
<th>OVERALL SUCCESS (%)</th>
<th>COMPLICATION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSI</td>
<td>81</td>
<td>78</td>
<td>85</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>NO MEDS</td>
<td>13</td>
<td>47</td>
<td>75</td>
<td>97</td>
<td>5</td>
</tr>
<tr>
<td>SED, NO NMBA</td>
<td>6</td>
<td>44</td>
<td>89</td>
<td>97</td>
<td>0</td>
</tr>
</tbody>
</table>

* May be due to size and age

Sagarin et. al., 2002
Basic Pediatric Anatomy: Size

Take home point: Small changes in pediatric airways cause large incremental increases in airway resistance.
23) In this picture taken during DL, the arrow is pointing to which of the following anatomic structure(s)?

a) Arytenoid cartilages
b) Epiglottis
c) Vallecula
d) Vocal cords
e) Aryepiglottic fold

True Vocal Cords
Physical Assessment to identify signs of a real/potential difficult airway in children

- Prominent or misshapen occiput
 - short neck
 - poor neck mobility
- Facial trauma (including burns)
- Facial anomalies:
 - Small mouth
 - Small mandible/recessed chin
 - Abnormal palate
 - Large tongue
 - Loose teeth
- Signs of upper airway obstruction
 - hoarseness, stridor, drooling, upright position of comfort
Airway Assessment: Malampati & ASA Classification

Malampati Score

<table>
<thead>
<tr>
<th>Malampati Score</th>
<th>Hard palate</th>
<th>Soft palate</th>
<th>Pillar</th>
<th>Uvula</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7 American Society of Anaesthesiologists (ASA) Classification

<table>
<thead>
<tr>
<th>ASA I</th>
<th>Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASA II</td>
<td>Mild systemic disease — No functional limitation</td>
</tr>
<tr>
<td>ASA III</td>
<td>Severe systemic disease — Definite functional limitation</td>
</tr>
<tr>
<td>ASA IV</td>
<td>Severe disease — Constant threat to life</td>
</tr>
<tr>
<td>ASA V</td>
<td>Moribund</td>
</tr>
</tbody>
</table>

UMHS / CES requires documentation of these on all procedural sedation consents
The Lemon Pneumonic

Mouth opening > 3 cm

Chin to neck distance > 3 finger breadths

<table>
<thead>
<tr>
<th>Physical signs</th>
<th>Less difficult airway</th>
<th>More difficult airway</th>
</tr>
</thead>
</table>
| **Look externally** | Normal face and neck
No face or neck pathology | Abnormal face shape
Sunken cheeks
Edentulous
"Buck teeth"
Receding mandible
"Bull-neck"
Narrow mouth
Obesity
Face or neck pathology |
| **Evaluate the 3-3-2 rule** | Mouth opening > 3F
Hyoid-chin distance > 3F
Thyroid cartilage-mouth floor distance > 2F | Mouth opening < 3F
Hyoid-chin distance < 3F
Thyroid cartilage-mouth floor distance < 2F |
| **Mallampati** | Class I and II (can see the soft palate, uvula, fauces +/- facial pillars) | Class III and IV (can only see the hard palate +/- soft palate +/- base of uvula) |
| **Obstruction** | None | Pathology within or surrounding the upper airway (e.g., peritonsillar abscess, epiglottis, retropharyngeal abscess) |
| **Neck mobility** | Can flex and extend the neck normally | Limited ROM of the neck |

RSI Procedures

The 7 “P”s of RSI

- Preparation
- Pre-oxygenation/Positioning
- Pre-treatment
- Protection (Pressure)
- Pharmacology
- Placement of the tube
- Post intubation management
RSI Timeline/Protocol

- Preparation: Zero-10 Min
 - Monitors, Patient position, Assess for difficulty
 - Equipment and Meds
- Pre oxygenate: Zero-5 Min
- Pre treat: Zero-3 Min
- Time Zero: Inject Paralytic with induction
- Protection: Zero-30 seconds
- Placement: Zero-45 seconds
- Post intubation management: Zero-90 seconds
<table>
<thead>
<tr>
<th>Time</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Assess if appropriate for RSI</td>
</tr>
</tbody>
</table>
| 0-3 minutes | Pre-oxygenate
| | Obtain IV access (2 preferable) |
| | Assemble necessary equipment and personnel |
| | Draw up medications |
| 3-5 minutes | Continue to pre-oxygenate
| | Premedicate |
| | Atropine (< 1 year, 1 through 5 years if receiving succinylcholine, |
| | and adolescents receiving a second dose of succinylcholine) |
| | Lidocaine (for substantial head trauma - option) |
| 5-6 minutes | **Administer sedation** |
| | **No shock, head injury or asthma** |
| | Thiopental |
| | Etomidate |
| | Propofol |
| | **Shock, no head trauma** |
| | **No asthma** |
| | Thiopental |
| | Etomidate |
| | **Consider no sedation** |
| | **Head trauma, no shock** |
| | **No asthma** |
| | Thiopental |
| | Etomidate |
| | Propofol |
| | **Asthma, no shock** |
| | **No head trauma** |
| | Ketamine |
| | Etomidate |
| | Apply cricoid pressure |
| | Administer neuromuscular blockade agent |
| | Succinylcholine (preferred, except when contraindicated) |
| | or |
| | Rocuronium |
| 6-7 minutes (one minute after NMB agent administered) | Perform orostrachal intubation |
| | Remove cricoid pressure when tracheal intubation confirmed (including CO2 detection) |
| | Consider need for more sedation/paralysis |

Preparation for RSI:

- **Equipment**
 - Type/Size Specific
 - Airway/Difficult Airway Cart
- **Monitors**
 - Pulse Oximetry
 - CR monitoring
 - CO2 monitoring
- **References:** Broslow Tape, Harriet Lane
 - Doses
 - Sizing
- **Personnel**
 - Nurses/Tech’s/Housestaff: Assign roles
- **Walk thru**
RSI Preparation: Airway equipment for Pediatric patients

Supplemental oxygen
Nasal cannula (infant, child, and adult)
Clear oxygen masks (non-re-breathing - infant, child, and adult)

Suction
Suction catheters (6 through 16 French) Yankauer suction tip (two sizes)

Bag-mask ventilation
Masks (neonate, infant, child, adult)
Self-inflating resuscitator bag (450 and 1000 mL)

Artificial airways
Oro-pharyngeal airways

Intubation equipment
Endotracheal tubes (uncuffed and cuffed, 2.5 through 8.0 mm internal diameter) Stylets (infant, pediatric, and adult) Laryngoscope handle (pediatric and adult) Laryngoscope blades: straight (sizes 0, 1, 2, and 1.5 straight and and curved (sizes 2 and 3) Miller, Mac, Phillips & Wis-Hipple

Rescue airway devices
Laryngeal mask airway (sizes 1, 1.5, 2, 2.5, 3, 4, and 5) Combitube (37 and 41 French)

Miscellaneous
Pulse ox, End-tidal CO2 detector, Magill forceps (pediatric and adult), Bulb suction
Endotracheal Tube Sizes

- Predicted Size Tube = (Age / 4) + 4
- 16 + age
 - 4
Which is the most appropriate equipment and position for the provided patient age?

a) 1 mo: Miller 1 blade, 4.5 uncuffed tube inserted to 14 cm, 8 Fr NG tube
b) 1 mo: Miller 2 blade, 4.5 uncuffed tube inserted to 11 cm, 8 Fr NG tube
c) 3 yo: Miller 1 blade, 4.5 uncuffed tube inserted to 14 cm, 12 Fr NG tube
d) 3 yo: Miller 2 blade, 4.5 uncuffed tube inserted to 11 cm, 12 Fr NG tube
e) 7 yo: Miller 2 blade, 5.5 uncuffed tube inserted to 16 cm, 12 Fr NG tube
Which is the most appropriate equipment and position for the provided patient age?

a) 1 mo: Miller 1 blade, 4.5 uncuffed tube inserted to 14 cm, 8 Fr NG tube
b) 1 mo: Miller 2 blade, 4.5 uncuffed tube inserted to 11 cm, 8 Fr NG tube
c) 3 yo: Miller 1 blade, 4.5 uncuffed tube inserted to 14 cm, 12 Fr NG tube
d) 3 yo: Miller 2 blade, 4.5 uncuffed tube inserted to 11 cm, 12 Fr NG tube
e) 7 yo: Miller 2 blade, 5.5 uncuffed tube inserted to 16 cm, 12 Fr NG tube
14) Which of the following is true regarding laryngoscope blades?

a) Miller blades are designed to sit in the vallecula
b) Miller blades are available in sizes from neonates to large adults
c) Macintosh blades are used more commonly in infants/children than in adults
d) Macintosh blades provide a better laryngoscopic view
e) Macintosh blades should not be used to lift the epiglottis because of increased risk of epiglottic trauma
14) Which of the following is true regarding laryngoscope blades?

a) Miller blades are designed to sit in the vallecula
b) Miller blades are available in sizes from neonates to large adults
c) Macintosh blades are used more commonly in infants/children than in adults
d) Macintosh blades provide a better laryngoscopic view
e) Macintosh blades should not be used to lift the epiglottis because of increased risk of epiglottic trauma
RSI: Pre-oxygenation

- A critical step
 - Reservoir of oxygen for apnea time
 - Time varies by patient/condition
- Begin pre-oxygenation immediately
- Administer 100% oxygen
 - If spontaneously breathing:
 - Non Rebreather Face mask FIO2 100% X 5 min
 - Avoid bagging spontaneously breathing pt
 - If need to bag: Selick maneuver
 - If assisted ventilation or BVM req’d: 8 effective VC
 - breaths provides best pre oxygenation.
- Goal: O2 sat > 90% duration of procedure
Time to desaturation during RSI

Children have a short interval to desaturation after paralyzation
RSI Pharmacology: The perfect pharmacologic recipe?

Medical

Trauma (ICP?)

Special Cases

(Asthma)
RSI Pre-treatment: Prevent adverse effects of laryngoscopy and/or succinylcholine

- Lidocaine
- Atropine
- Defasciculation dose of Non depolarizing?
RSI Pretreatment: Lidocaine

- Local anesthetic
- Use in RSI
 - **Theory:** Blunt rise in ICP (unknown exact mech)
 - No studies available measuring efficacy of lidocaine on neurologic outcome after trauma
 - Current recommendations 1-2mg/kg IV 2-5 min before intubation
- Adverse Effects:
 - Seizure
 - Hypotension
RSI Pre-treatment: Atropine

- **Mechanism of Action:**
 - Anti cholinergic, Blocks muscarinic ACH receptors

- **Original Science:**
 - Milk introduced in lamb = laryngeal reflex:
 - Apnea, hypoxia and bradycardia
 - Reflex particularly strong in newborn animals and infants
 - Wennergren G, Milerad J, Hertzberg T. Laryngeal reflex.

- **Limited data to answer question:**
 - Does atropine prevent bradycardia in children undergoing RSI?
Does Atropine prevent bradycardia during RSI?

Retrospective cohort study comparing atropine RSI vs no atropine RSI children (0-19y/o)
Rates of bradycardia 4% each group.

Myth: Atropine should be administered before succinylcholine for neonatal and pediatric intubation

Bethany Fleming, BA, BS; Maureen McCollough, MD; Sean O. Henderson, MD CJEM. 2005 Mar;7(2):114-7
Atropine: What can we say?

Who:
- All children < 1 year, Children < 5 y/o SCh, AND
- Prior to repeat dose SCh (in adolescent/adult)

Dose
- Current recommendations: AAP ACEP AHA PALS
- “Cannot recommend uniform guidelines based on lack of evidence”
 - 0.01-0.02mg/kg (min 0.1, max 1.0mg) 1-2 min
 - Prior to intubation

Adverse effects
- Increase HR, Increase IOP
RSI: Pharmacology/Paralytic with Induction

- Agents determined by condition/scenario
- Induction options
 - Etomidate
 - Midazolam
 - Ketamine
 - Propofol (Currently NOT available in UMHS ED)
 - Barbiturates
 - Pentothal
RSI Pharmacology
Etomidate

- Non narcotic, non barbiturate hypnotic induction
- Sedative, not analgesic
- Lowers ICP
- Pro:
 - Min CV effects so safe in pts with unstable hemodyn
- Dose: 0.3mg/kg IV, onset 2-30 seconds
- May cause
 - pain on injection
 - myoclonic jerks
 - hiccups
RSI Pharmacology
Etomidate… but

- Adverse Effects
 - Inhibits mitochondrial hydroxylase activity
 - Even after single dose
 - Effects seen in PICU population
 - Implications in septic patients
 - Risk of infection may be increased
 - No randomized clinical trials assess outcome
 - Bottom line: Using judiciously
RSI Pharmacology: BDZ’s
Midazolam, Lorazepam, Diazepam

- Sedative, anxiolytic, amnestic NOT analgesic
- Resp depressants
- Reversible with Flumazenil
- Several choices

Midazolam: Dose 0.1-0.3mg/kg (induction)

More potent than diazepam
Rapid onset < 1 min
Caution when used with narcotics, esp in younger children/infants

“Near data suggest many underdose Midazolam!”
RSI Pharmacology: Ketamine

- Dissociative agent; amnestic and analgesia
- Release of catecholamine
 - Increased HR and BP
- Adverse Effects
 - Increased secretions
 - Emergence reactions
 - Laryngospasm
 - May increase ICP (relative contraindication)
RSI Pharmacology: Ketamine

- Bronchodilator: intubation of asthmatics
- Induction dose: 1-2 mg/kg
- Onset 10-15 sec
- Duration 10-15 min
A 12 yo boy with severe asthma is being treated in the ED. So far he has received 2 hours of continuous nebulized albuterol and ipratropium bromide, methylprednisolone and IV magnesium. He is still in severe respiratory distress. A bedside ABG reveals a pH of 7.12, pCO2 80 torr, and pO2 45 torr on 100% supplemental oxygen. You are getting ready to perform rapid sequence intubation (RSI) and preoxygenate with 100% oxygen with a bag/mask system. During induction with ketamine, he develops stridor with suprasternal retractions. Which of the following would be most appropriate?

A) Administer nebulized racemic epinephrine
B) Administer IV fentanyl
C) Administer IV succinylcholine
D) Administer IV flumazenil
E) Perform jaw thrust until ketamine wears off
A 12 yo boy with severe asthma is being treated in the ED. So far he has received 2 hours of continuous nebulized albuterol and ipratropium bromide, methylprednisolone and IV magnesium. He is still in severe respiratory distress. A bedside ABG reveals a pH of 7.12, pCO2 80 torr, and pO2 45 torr on 100% supplemental oxygen. You are getting ready to perform rapid sequence intubation (RSI) and preoxygenate with 100% oxygen with a bag/mask system. During induction with ketamine, he develops stridor with suprasternal retractions. Which of the following would be most appropriate?

A) Administer nebulized racemic epinephrine
B) Administer IV fentanyl
C) Administer IV succinylcholine
D) Administer IV flumazenil
E) Perform jaw thrust until ketamine wears off
RSI Pharmacology: Propofol

- Alkphenol
- Sedative hypnotic
- Attenuates ICP rise
 - Dec CPP
- Induction dose 0.5-1.2mg/kg IV
- Adverse problems: BP
RSI Pharmacology: Thiopental

- Barbiturate
- GABA receptor
- Rapid onset sedation (15 sec)
- Decrease ICP
- Cardiac depressant, venodilator: Lower BP
- Dose: Euvolemic child 5-8mg/kg IV
- Hypovolemic child 1-5 mg/kg IV
RSI: Neuromuscular Blocking Agents (NMB’s)

- NMB issues to consider
 - Documentation of neuro exam
 - Make sure to sedate too
 - Dosing must be adequate
 - Anticipate complications
 - Failed intubation
 - Adverse effects
 - Prep for surg airway
RSI Pharmacology: Neuromuscular Blocking Agents (NMB’s)

- Depolarizing
 - Succinylcholine*
- Non depolarizing
 - Vecuronium
 - Rocuronium
 - Rapacurium
 - Pancuronium
 - Atracurium
 - Curare
RSI: Neuromuscular Blocking Agents (NMB’s)

- **Depolarizing Agent (Succ)**
 - Simulate Ach receptors
 - Reliable paralysis with long track record of use

- **Non depolarizing agents**
 - Competitively block Ach receptors without
 - Stimulating them
RSI: Neuromuscular Blocking Agents (NMB’s): Succinylcholine

Dose: Infants/Young 2mg/kg IVP
Dose: Older children 1-1.5mg/kg IVP

Contraindications:
- Personal/Fam with Malignant Hyperthermia
- Burn >10% BSA > 24 hr old (not problem in acute)
- Crush injury > 1 week old
- Denervation > 1 week old
- Progressing/ongoing neuromuscular dz; watch for children with suspected myopathies

Side Effects
- Bradycardia (esp after >1 dose); reduced with pre tx with Atropine
- Hyperkalemia: Pk 5 min, resolves 15 min, rarely sig
- Fasciculations
- Myotonic syndromes
- MH
RSI Pretreatment: Defasciculation?

- Prior Recommendations for defasc dose
- Non depolarizing NMB before Succ
- Enhance effect of succ and reduce side effect
- Not routine in pediatrics RSI but some evidence
 - Of succ induced hyperkalemia.

In which of the following patients could succinylcholine be used safely for RSI?

a) 2 yo with 2nd and 3rd degree burns covering 20-30% of the body surface area
b) 4 yo in a cervical spine (c-spine) collar with concern for a c-spine injury
c) 12 yo s/p CVA 2 months ago with residual left hemiparesis
d) 1 yo with Type 1 spinal muscle atrophy
e) 17 yo with renal failure on hemodialysis with known electrolyte abnormalities
In which of the following patients could succinylcholine be used safely for RSI?

a) 2 yo with 2nd and 3rd degree burns covering 20-30% of the body surface area
b) 4 yo in a cervical spine (c-spine) collar with concern for a c-spine injury
c) 12 yo s/p CVA 2 months ago with residual left hemiparesis
d) 1 yo with Type 1 spinal muscle atrophy
e) 17 yo with renal failure on hemodialysis with known electrolyte abnormalities
Answer: b. Succinylcholine may be used for RSI given its rapid onset and short duration of action. When succinylcholine binds to acetylcholine receptors, potassium is released, increasing serum potassium concentrations. Therefore, it is contraindicated in patients with known/suspected hyperkalemia, including patients with severe burns and those in renal failure (unless potassium is already known to be within normal limits). In patients with neurological denervation, such as would occur s/p CVA, and those with known or suspected myopathies or neuromuscular disease, acetylcholine receptors are upregulated at motor endplates. Therefore with succinylcholine use, massive amounts of potassium can be released precipitating hyperkalemic arrest even in patients with baseline normal potassium levels.
RSI: Neuromuscular Blocking Agents (NMB’s): Non depolarizing Agents

- Competitively block Ach receptor
- Does not stimulate receptor
- Eventually diffuses out of synapse
- Useful for pts who cannot use Succ
- Longer duration of action
- Onset of action may be a little longer than Succ
RSI: Neuromuscular Blocking Agents (NMB’s): Non depolarizing Agents

- Vecuronium
 - Dose 0.1-0.2mg/kg/IV
 - Max paralysis: 1-2 min
 - Duration of apnea: 25-45 min
 - Less vagolytic than pancuronium
 - Biliary excretion
RSI: Neuromuscular Blocking Agents (NMB’s): Non depolarizing Agents

- **Rocuronium**
 - Dose 1mg/kg
 - Onset: 60 sec
 - Duration: Up to 35 min
 - Little CV effects

- **Comparison of Rocuronium vs Succ**
 - Equivalent provision of acceptable Int cond.
 - Rates of intubation success similar
 - Succ better at “excellent” condition

AEM 2002 Perry; Metanalysis 1606 pts
RSI: Other controversial Succinylcholine Issues

- Obese Pts?: Use actual body weight
 Rose et al. Anesth Analg 2000

- Is there an optimal dose?
 - Controversial, Rec peds dose stands
In addition to direct visualization of an endotracheal (ET) tube passing through the vocal cords, the most rapid and reliable means to confirm tube placement in the trachea after intubation is:

A) Capnography
B) Oxygen saturation
C) Bilateral breath sounds on auscultation
D) Condensation in the ET tube
E) Fiberoptic bronchoscopy
Difficult airway

King Airway Device

[Image of the King Airway Device]
Glidescope

DiverDave, Wikimedia Commons
Transtracheal Needle Ventilation

Alternative to Cric

1) Transtracheal ventilation is difficult.10,11

2) Transtracheal ventilation through a catheter must be done with a high pressure, high flow device.10,12

3) Transtracheal ventilation through a catheter cannot be effectively done using a ventilation bag.12

4) The resistance of air flow through a transtracheal ventilation catheter increases as a 4th power function as the diameter of the catheter decreases.13
LMA-Fastrach™

Sizes 3, 4 & 5
Size 3: Children 30-50kg

LMA Fastrach™ ETT

Airway tube

Epiglottic Elevating Bar

Cuff

Handle
Complications: Anticipate Problems before they happen!

- DOPE
 - Displacement
 - Obstruction
 - Pneumothorax
 - Esophageal placement

- Medication complications
- Take the pt off the vent
 - BVM
 - Check connections/Machines
RSI Post Intubation Care

- Secure the tube
- Order the CXR
- Administer sedation
- Reconsider longer acting acting paralysis as indicated

Respiratory Care:
- Vent settings
- Respiratory Therapy/transport
Resources for help/practice

- American Heart Association: PALS Manual
- UMHS Clinical Simulation Center
- UMHS Annual Anesthesia Airway workshop
- UMHS PEM Airway Workshop
- UMHS Dept of EM Difficult Airway Workshop
References

Sagarin MJ. Et al. Rapid Sequence Intubation for pediatric emergency airway management. Ped Emer Care 18(6) Dec 2002

Zuckerbraun NS et al. Use of etomidate as an induction agent for rapid sequence intubation in a pediatric emergency department. 1: Acad Emerg Med. 2006 Jun;13(6):602-9

Schenarts CL, Burton JH, Riker RR. Adrenocortical dysfunction following etomidate induction in emergency department patients. Acad Emerg Med 2001;8:1-7
