Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ*

 Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

 To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Engagement: Prior knowledge about Inquiry-Based Teaching.

This is a chance to address and discuss previous ideas and misconceptions regarding the concept of inquiry-based teaching. Allow students to brainstorm.

- What is Inquiry-Based Teaching?
- How has it been experienced in the classroom?

Exploration: An explanation of what Inquiry-Based Teaching is.

Discuss the defining characteristics of Inquiry-Based Teaching.

- Empowers students to take charge of their learning
- Teachers ask instead of tell
- Asking guiding questions and answering student’s questions
- Students apply knowledge to new scenarios
- Classroom environment parallels what scientists face in the real world

Explanation: Applying Inquiry-Based methods to our lessons.

In small groups, walk through the 5E lesson outlines and discuss how to present them in ways that emphasize inquiry-based learning.

- How can we incorporate these techniques to make inquiry-based lessons?
- What background information must students be provided with so that they can arrive at conclusions on their own?

Elaboration: Understanding the imperfections of Inquiry-Based Teaching.

There are times when Inquiry-Based Teaching may not be the most effective. Hypothesize about situations when this may be true and discuss why.

- When is inquiry-based teaching appropriate?
- When is it problematic?
- How can we distinguish between when it is appropriate or not?
- Need basic foundation of knowledge first
- Ex. Instructions for data collection often needed for consistency’s sake
Evaluation: Assessment of understanding.

With exposure to the Inquiry-Based Teaching method, revise the 5E outline to reflect these techniques.

- Which of the 5E’s did you change the most?
- How does Inquiry-Based Teaching improve the effectiveness of the lesson?
- Moving forward, what are some take-home messages about Inquiry-Based Teaching?