Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
OBJECTIVES

- Discuss different types and pathologies of aortic disease.
- Determine treatment and management options for each state.
- Evaluate need for surgical intervention.
- Review prognosis and outcome.
The Aorta

- Largest artery in the body.
- Carries oxygen-rich blood away from the heart.
- Elastic (especially ascending aorta).
- 3 layers of tissue
 - Thin inner layer: tunica intima
 - Thick middle layer: tunica media
 - Thin outer layer: tunica adventitia
Common Causes of Aortic Disease

- Hypertension
- Atherosclerosis
- Bicuspid aortic valve (alters laminar flow)
- Cocaine or MDMA use
- Connective tissue disorders
- Infection (syphilis, TB, salmonella)
- Pregnancy
- Injury (iatrogenic and traumatic)
Case Presentation

- 76 year old woman with a history of hypertension presents to the emergency department with a sense of abdominal fullness.
- Symptoms have been persistent for several weeks.
- X-rays have been unremarkable.
- BP 94/48, HR 125, RR 20, SaO2 96%
Case Presentation

What is your differential diagnosis?
Aortic Aneurysm

James Heilman, MD, Wikimedia Commons
Aortic Aneurysm

- Any abnormal dilation or out-pouching of the aorta, greater than 50% of normal diameter.
- Size matters:
 - Thoracic > 6cm
 - Abdominal > 5.5cm
 - Infrarenal aorta > 3cm
- 2 different shapes:
 - Fusiform
 - Saccular
Signs/Symptoms

- Hoarseness
- Dysphagia.
- Chest/back pain.
- Shortness of breath.
- Abdominal discomfort.
- Sense of fullness.
- ** Often asymptomatic until rupture.**
Physical Exam Findings

- Murmur if involving a valve.
- Tamponade
- Abdominal bruit (non-specific).
- Pulsatile abdominal mass.
Imaging Studies

- CXR
- Trans-thoracic echocardiogram
- Ultrasound (modality of choice)
- CT (non-contrast)
- CTA (pre-intervention)
- MRI/MRA
- Conventional aortography (rarely used)
Table 1 Clinical condition: pulsatile abdominal mass, suspected AAA

<table>
<thead>
<tr>
<th>Radiologic procedure</th>
<th>Rating</th>
<th>Comments</th>
<th>RRL(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US aorta abdomen</td>
<td>9</td>
<td>Initial examination. May be limited by body habitus or acoustic window</td>
<td>O</td>
</tr>
</tbody>
</table>
| CT abdomen without contrast | 8 | Preferred for symptomatic patients. Suitable for patients in whom US is not useful | ★★★ ★★★
| CTA abdomen with contrast | 7 | Also enables preinterventional planning | ★★★ |
| MRA abdomen without contrast | 6 | Alternative to CTA. Unable to detect calcium. Site-specific expertise important | O |
| MRA abdomen without and with contrast | 6 | Alternative to CTA. Unable to detect calcium. Site-specific expertise important. See statement regarding contrast in text under “anticipated exceptions” | O |
| Aortography abdomen | 2 | Essentially replaced by cross-sectional imaging for diagnostic purposes. May be used for preinterventional planning | ★★★ |
| FDG-PET/CT abdomen | 2 | | ★★★ |

Rating scale: 1–3 usually not appropriate, 4–6 may be appropriate, 7–9 usually appropriate

\(^a\) Relative radiation level
Aortic Aneurysm

James Heilman, MD, Wikimedia Commons
Aortic Aneurysm

Risk factors:

- Smoking
- Males: Females 3:1
- Age
- Hypertension
- Hyperlipidemia
- COPD
- Family history
Aortic Aneurysm

● Management:
 - Mortality related to size.
 - Medical management of small aneurysms measuring <4.0-5.5 cm.
Aortic Aneurysm

Aortic Aneurysm

● Management:

 Surgical repair commonly performed if aorta >5.5cm.
 ● No mortality benefit to earlier surgical intervention.
 ● Mortality from surgical intervention varies from 1.1-7%.
Aortic Aneurysm

- Risk of rupture:
 - If <5 cm, is <1% per year.
 - If 5 cm, is 3-5% per year.
 - If >5 cm, is as high as 5% per year.

- For ascending aortic aneurysms, *yearly* risk of rupture, dissection, or death at 6 cm is 14.1%!
Aortic Aneurysm

- Open Surgical Intervention

 Reported failure rate of 0.3%.

- Endovascular repair

 Preferred for elderly patients.
 Reduced perioperative morbidity and mortality

 Possible failure rate of 3% with multiple complications possible.
Aortic Aneurysm

• Risk factors for death from ruptured aortic aneurysm:

 Age >76 years
 Cr >190umol/L
 Hgb <9 g/dL
 LOC
 EKG evidence of ischemia.
Mortality from ruptured aortic aneurysm:
100% mortality if 3+ risk factors.
48% 2 risk factors.
28% 1 risk factor.
18% with no risk factors.
Aortic Aneurysm

- Prevention:
 - Stop smoking!
 - β-blockers may reduce the extent of growth for large >5.0cm aneurysms.
 - Statins may reduce mortality post-operatively.
Case Presentation

- 54 year old man presents with sudden onset of pain between his shoulder blades which started when he lifted his wife.
- X-ray has been unremarkable.
- VITALS:
 - BP 201/169
 - HR 104
 - RR 24
 - SaO2 96%
 - RA
Case Presentation

What is your differential diagnosis?
Aortic Dissection
Aortic Dissection

- Medial degeneration.
- A tear in the tunica intima allows blood to dissect between the intima and media.
- True incidence of the disease is unknown.
Aortic Dissection

● DeBakey Classification:
 Type I: Ascending and descending aorta.
 Type II: Ascending aorta only.
 Type III: Descending aorta distal to the L. subclavian.

● Stanford Classification:
 Type A: Involving the ascending aorta.
 Type B: Involving the descending aorta distal to the L. subclavian artery.
Aortic Dissection

- Type A dissection often begins just above the coronary arteries where the aorta is the largest and thinnest.

 Always a surgical emergency.

- Type B dissection involves the distal aorta.

 Medically managed.
Aortic Dissection
Signs/Symptoms

- Sudden onset of sharp, tearing pain radiating to the back.
- Any neurologic complaints associated with pain.
- Syncope.
- Acute CHF.
- Other vague non-specific symptoms.
Physical Exam Findings

- Hypoxia
- Altered mental status
- Tachycardia
- Pulse deficits
- BP discrepancies
- Shock
Aortic Dissection

• However, landmark study (International Registry of Aortic Dissection) found:
 pulse deficit: 15 %
 aortic murmur: 31.6 %
 normal chest x-ray: 12 %
 absence of mediastinal widening: 34 %
 syncope: 12 %
 painless: 2.2%
Imaging Studies

- CXR
- CT
- MRI/MRA
- TEE
- TTE (low sensitivity: 55-75%)
- Angiography (former “gold standard”)
Imaging Studies

- Classic teaching of CXR findings:
 - Widened aortic knob or mediastinum.
 - Displaced intimal calcification.
 - Pleural effusion (left >> right).
 - Opacification of the “AP window.”
 - Left apical pleural cap.
 - Indistinct or irregular aortic contour.
 - Tracheal or esophageal deviation.
Aortic Dissection
I heard you can use the d-dimer...

- The d-dimer is almost 100% sensitive for acute dissection. HOWEVER, specificity is low.
- Useful in the high negative predictive value
- A false positive d-dimer would require CT scanning of approximately 40% of the patients
Aortic Dissection

- Mortality 1-2% per HOUR for type A dissections. 75% within 2 weeks, 90% mortality at 30 days.

- With successful initial therapy:
 - 5-year survival rate is 75%
 - 10-year survival rate (if surgically repaired) is 40%-60%.
Aortic Dissection

- Treatment strategies are similar to aortic aneurysm:

 Medical:
 - Morphine
 - Anxiolytics
 - Afterload reduction and β-blockade
 - Goal SBP 100-110mmHg
 - Goal HR 50-60bpm

 Surgical
Aortic Dissection

- Surgery is indicated for all type A dissections.
- Indicated for type B dissections only if:
 - Persistent symptoms.
 - Rapidly expanding false lumen.
 - Impending or frank aortic rupture.
 - Major organ malperfusion that cannot be resolved by percutaneous therapy.
Aortic Dissection

- Increased risk of death:
 - Older age.
 - Signs and symptoms of organ malperfusion.
 - Clinical instability (pulse deficits, renal failure, hypotension, and/or shock).
Aortic Dissection

- Despite advances in medical/surgical treatment, 15-30% of patients will require further surgical intervention for complications:
 - aortic dilatation and rupture (most common cause of death)
 - progressive aortic regurgitation
 - organ malperfusion
 - irreversible ischemia
Case Presentation

- 24 year old man, restrained driver involved in a high-speed MVC vs. tree.
- Airbags deployed.
- Complaining of chest pain and shortness of breath

VITALS:
- BP 98/52
- HR 132
- RR 26
- SaO2 90%
- RA
Case Presentation

What is your differential diagnosis?
Blunt Aortic Injury
Signs/Symptoms

- Inter-scapular pain
- Dyspnea
- Dysphagia
- Relative upper extremity hypertension ("pseudo-coarctation")
- ** Often do not make it into the ED**
Physical Exam Findings

- Seat-belt or steering wheel imprint.
- May find evidence of rib fractures.
- Left supraclavicular hematoma.
- New murmur.
- In-hospital death between 50-100%, exsanguinating hemorrhage being the most important cause of early death.
Imaging Studies

- CXR
- Spiral CT (97-99.3% sens, 87.1-99.8% spec)
- CTA
- MRI
- TEE
- Intravascular ultrasonography
- Bi-planar angiography
Imaging Studies
Blunt Aortic Injury

- Most commonly thoracic, rarely abdominal.
- Various gradations of injury:
 - Intimal tear.
 - Intramural hematoma.
 - Pseudoaneurysm.
 - Free rupture.
Blunt Aortic Injury

James Heilman, MD, Wikimedia Commons
Blunt Aortic Injury

- Estimated 7,500 - 8,000 cases per year in the United States.
- Blunt thoracic trauma is second most common cause of trauma-related death after head injury.
- Thoracic aortic rupture accounts for nearly 18% of all deaths in motor vehicle collisions.
Blunt Aortic Injury

- For those who initially survive, the prognosis remains poor:
 - ~30% die within first 6 hours.
 - 50% will not live beyond the first 24 hours.
Predictors of aortic injury include:
- Widened mediastinum.
- BP <90 mmHg.
- Long bone fracture.
- Pulmonary contusion.
- Left scapula fracture.
- Hemothorax.
- Pelvic fracture.
Blunt Aortic Injury

- The isthmus is area of greatest strain.
- Tensile strength at the isthmus was found to be only 63% of that of the proximal aorta.
- Aortic ruptures occur at this site in 80% of the pathological series and in 90-95% of the clinical series.
Blunt Aortic Injury

- Rupture (descending order):
 - Isthmus
 - Ascending aorta
 - Aortic arch
 - Distal descending aorta
 - Abdominal aorta
Blunt Aortic Injury

- Theory on mechanism of blunt aortic injury:
 - shearing stress during rapid deceleration.
 - compression of the aorta between sternum and thoracic spine (osseous pinch).
 - direct load causing aortic wall strain and medial tears.
Image removed of blunt aortic trauma

Blunt Aortic Injury

- Associated extra-thoracic injuries are common, particularly abdominal and intracranial.
- Morbidity (amputation and brachial plexus injury) is frequent.
Treatment

- Initially thought to be fatal (Parmley).
- Traditional treatment: early open surgical repair with graft interposition.
- Hemodynamic instability upon presentation remains the main mortality risk factor.
Treatment

- Small pseudoaneurysms and intimal injuries can generally be managed expectantly.
- Delayed repair is safe in certain patient populations.
For hemodynamically stable patients, may start β-blockers to lower MAP and to decrease aortic shear force.

The target mean arterial pressure is between 60 and 70 mmHg.

HOWEVER, if there is a significant associated cerebral injury, even mild hypotension may worsen the neurologic outcome and normal blood pressure should be maintained.
Advantage of

- Avoidance of:
 - thoracotomy
 - single-lung ventilation
 - aortic cross clamping
 - left heart or cardiopulmonary bypass.

- Expeditious
Disadvantage of

- Endograft size tends to be large
- Still uncertain complications
 - Migration of graft
 - Erosion of graft
- Unknown long-term outcomes
Possible Complications

• 2 peaks for complications:
 During the first week: those with major or borderline aortic radiologic injury
 Between the first and third months
Diagnosis of Aortic Disease

● Maintain a high level of suspicion!
● No one test is perfect.
● CT scan if possible, otherwise TTE/TEE if available.

Bibliography

27. Anon. Volume 1/PART III/Section Four/Chapter ... from Rosen.
Questions?