Attribution Key
for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

- **Public Domain – Government**: Works that are produced by the U.S. Government (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ*

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act (17 USC § 107) *laws in your jurisdiction may differ*

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Preparing a solution of known concentration

Molarity

Molarity is a measurement of concentration.

Specifically for molarity, it is the number of moles in a given volume

\[
\text{Molarity} = \frac{\text{moles}}{\text{liters}}
\]

There are 6 moles of NaCl in 3 liters of water, so the Molarity (Concentration) is 2 moles / liter. The molarity of the solution is 2.0

[http://www.youtube.com/watch?v=kuD2bDHVP90 &feature=player_embedded]
The main equation for calculating molarity is that
molarity = the number of moles in one liter of
solution

The video below shows exactly how to setup and
use the molarity equation to determine the
number of moles needed to make 100mL of a
0.1M solution

[http://www.umich.edu/~chem125/softchalk/Exp
2_Final/]

Now use the equation in the video to solve these
problems. You may need to determine the
molecular weight of compounds as well, so have
your periodic table
[http://www.webelements.com/] ready!

Still wanting some extra practice on calculating
molarities, and volumes and moles? Visit the link
below for a bottomless molarity worksheet!