Attribution Key
for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- Creative Commons – Zero Waiver
- Creative Commons – Attribution Share Alike License
- Creative Commons – Attribution Noncommercial License
- Creative Commons – Attribution Noncommercial Share Alike License
- GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act (17 USC § 107) *laws in your jurisdiction may differ

 Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

 To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Experiment Goal
Generating and Using a Calibration Graph

Calibration Graphs are used to determine many things. In this experiment you are using a calibration graph to relate absorbance and concentration. They are used in many fields to relate a quantity with something you can physically measure. In the lab, you will prepare standards of a known concentration, and plot a calibration graph. You will then use that graph to figure out the concentration of an unknown sample.

Terms you will need to know for the experiment

Dillution
Linear
Straight Line
Line of Best Fit
Absorbance
Concentration

Unknown

Concepts you will learn

What is a dilution factor?
What is a line of best fit?
What is a calibration graph and how do you use it?

Skills you will learn

How to dilute samples
How to generate and plot a calibration graph
How to work with the calibration graph to be able to determine an unknown