Attribution Key
for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

Public Domain – Government: Works that are produced by the U.S. Government (17 USC § 105)
Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
Creative Commons – Zero Waiver
Creative Commons – Attribution License
Creative Commons – Attribution Share Alike License
Creative Commons – Attribution Noncommercial License
Creative Commons – Attribution Noncommercial Share Alike License
GNU – Free Documentation License

Make Your Own Assessment

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Obtaining an Absorbance Spectrum

Laboratory Details

You will take each of the solutions you already made, and create an absorbance spectrum for each one. To do this you will use the spectrophotometer to select a wavelength of light and measure and record the absorbance of the sample at that wavelength.

Use the labeled picture below to guide youself through the steps for taking an absorbance measurement.
1). Tune the spectrophotometer to the desired wavelength

2). Load a cuvette with the solvent used in your sample

What did you use to make your solution? Water? Acid? Base? This is your solvent, and this is what you will use to tare the spectrophotometer.

Make sure the clear sides of the cuvette are in the direction of the light.
3). Place the cuvette in the spectrophotometer, and close it. Then tare the spectrophotometer.

This is just like taring a balance. You are telling the spectrophotometer that whatever light it is measuring, should be equal to zero absorbance.

4). Once the spectrophotometer is tared, then remove the solvent cuvette, and load a cuvette with your sample. Record the absorbance value that it gives you.
5). This procedure **NEEDS** to be repeated at **EACH** wavelength.

Absorbance is different for **EVERY** chemical at **EVERY** wavelength, so every time you change one of them, the spectrophotometer will need to be tared.
Once you have your data all recorded, then you can plot each of your absorbance spectra

Y-axis will be the absorbance values

X-axis will be the wavelength

Look at the absorbance spectra that you create.
- Look at the maximum absorbance in your graph
- Look at the minimum absorbance in your graph
- What color are your solutions?