Use + Share + Adapt
{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- PD-EXP: Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
- PD-SELF: Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
- CC0: Creative Commons – Zero Waiver
- Attribution License
- CC-ASA: Creative Commons – Attribution Share Alike License
- CC-NC: Creative Commons – Attribution Noncommercial License
- CC-NC-SA: Creative Commons – Attribution Noncommercial Share Alike License
- GPL-FLD: GNU – Free Documentation License

Make Your Own Assessment
{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- PD-INEL: Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)).*laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- FAIR USE: Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act (17 USC § 107).*laws in your jurisdiction may differ
 Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.
 To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Generating and Using a Calibration Graph

Using your Calibration Graph!

Now for the fun part! Using the calibration plot that YOU made from the data two pages ago. We are going to determine the concentration of an unknown solution. Make sure you have your plot ready, because here we go!

Here's a typical problem. You take 3mL of your unknown sample and 7mL water and mix them together. The diluted sample gives an absorbance of 0.432. What is the concentration of the initial unknown?

Where do you begin?! Well, you have your calibration graph, and it SHOULD look something like this, all properly labeled.
1). You have an absorbance, and you have a straight line equation that relates absorbance to concentration. This is the line of best fit through your data.
2). Now this is the absorbance of your DILUTED solution. But what was the concentration of your ORIGINAL solution?

\[y = 0.6717x \Rightarrow Abs = 0.6717(\text{concentration}) \]

\[Abs = 0.432 \]

\[0.432 = 0.6717(\text{concentration}) \]

Concentration = 0.643M
Remember you diluted it once, so you can use the Dilution Equation

\[M_1 V_1 = M_2 V_2 \]

Your diluted sample was \(0.643M = M_1 \)

The volume of that solution was 3mL Unknown and 7mL Water

\[3mL + 7mL = 10mL = V_1 \]

The initial volume of your Unknown was 3mL = V_2

\[
\begin{align*}
\left(0.643M \right) \times \left(10mL \right) &= M_2 \left(3mL \right) \\
\left(6.43M \times mL \right) &= M_2 \left(3mL \right) \\
\frac{(6.43M \times mL)}{(3mL)} &= \frac{M_2(3mL)}{(3mL)} = 2.14M = M_2
\end{align*}
\]

The original unknown concentration was 2.14M
Common Errors In Calibration Plots

- Spectrophotometer is not calibrated
- Abs readings are incorrect
- Diluted samples are prepared incorrectly or contaminated
- Inappropriate wavelength chosen for calibration graph
- The calibration line is not a "best fit" line