Project: Ghana Emergency Medicine Collaborative

Document Title: Drugs of Abuse

Author(s): Tim Albertson, M.D., Ph.D. (University of California- Davis); Jim Holliman, M.D., F.A.E.C.P. (Pennsylvania State University) 2012

License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Share Alike-3.0 License: http://creativecommons.org/licenses/by-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. These lectures have been modified in the process of making a publicly shareable version. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/privacy-and-terms-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

© PD-EXP Public Domain – Expired: Works that are no longer protected due to an expired copyright term.
© PD-SELF Public Domain – Self Dedicated: Works that a copyright holder has dedicated to the public domain.
© ZERO Creative Commons – Zero Waiver
© BY Creative Commons – Attribution License
© BY-SA Creative Commons – Attribution Share Alike License
© BY-NC Creative Commons – Attribution Noncommercial License
© BY-NC-SA Creative Commons – Attribution Noncommercial Share Alike License
© GNU-FDL GNU – Free Documentation License

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

© PD-INEL Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

© FAIR USE Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination DOES NOT mean that all uses of this 3rd-party content are Fair Uses and we DO NOT guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Update on Drugs of Abuse ("some club-drug stuff")

Tim Albertson, M.D., Ph.D.
Professor of Medicine, Pharmacology and Toxicology
UC Davis School of Medicine
CPCS, Sacramento Division

Jim Holliman, M.D.
Penn State University
Overview of Topics

- Gamma hydroxybutyrate (GHB)
 - GHB
 - GHB Analogs
 - GHB / Analog Withdrawal

- Ecstasy: MDMA (Methylenedioxyamphetamine)
Overview of Topics

- Methamphetamine
- Dextromethorphan (DM)
- Ketamine
- Flunitrazepam
- Mescaline
- Inhalants
- Anticholinergics
GHB
(Gamma-hydroxybutyrate)
What is GHB?

- Gamma hydroxybutyrate
- Naturally occurring in brain tissue
 - neurotransmitter-like substance
 - dopamine release in substantia nigra
- Similar structure to GABA
- GABA-B agonist effects
- Approved for narcolepsy 2002
 - Sodium oxybate (Xyrem) Orphan Medical
 - 4.5 gms a night AWP $739 / month limited to certain pharmacies and physicians
GHB

- Investigated as an anesthetic agent: caused myoclonus and delirium; current IND for sleep apnea
- Crystalline salt
- Soluble in water and methanol
- Tasteless
- GBL-gamma-butyrolactone & BD-1,4 butanediol precursor molecules convert to GHB in-vivo
Structure Activity Relationship

\[
\begin{align*}
\text{COOH} & \quad \text{COOH} \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{CH}_2 & \quad \text{CH}_2 \\
\text{OH} & \quad \text{NH}_2 \\
\text{GHB} & \quad \text{GABA} \\
\text{gamma} & \quad \text{gamma} \\
\text{hydroxybutyrate} & \quad \text{amino} \\
\ & \quad \text{butyric acid}
\end{align*}
\]
History of GHB

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960’s</td>
<td>France - Synthesized as an Anesthetic</td>
</tr>
<tr>
<td>1987</td>
<td>Orphan Drug (IND-narcolepsy) ; USFDA</td>
</tr>
</tbody>
</table>
| 1990-1 | Body Builders “Undetectable steroid”
Growth hormone stimulator |
| 1992-5 | Sleep aid, Rave party, Popularity rises |
| 1996 | Sexual enhancer, “Date-Rape” Drug |
| 1997 | Emergence of GHB Analogs
Emergence of Withdrawal Cases |
| 2000 | Federal Schedule I status |
| 2002 | FDA approval for Narcolepsy : Xyrem |
Slang Names: Gamma Hydroxybutyrate

- Cherry meth
- Easy lay
- G, G caps
- Gamma hydrate
- Georgia home boy
- GHB
- GH Beers
- Liquid E
- Liquid X
- Liquid ecstasy
- Natural sleep 500
- Organic Quaalude
- Oxy sleep
- Scoop
What are GHB Analogs?

- **Organic solvents**
 - √-Butyrolactone, 2(3) Dihydrofuranone,
 - 1,4-Butanediol, Tetramethylene Glycol

- **Converted to GHB in vitro or in vivo**
 - *In vitro using NaOH, heat*
 - *In vivo (Lactonase enzymes) : GBL*
 - *In vivo (alcohol / aldehyde dehydrogenase)*

- **Identical clinical effects to GHB**
Conversion:
Gamma Butyrolactone (GBL)

\[\text{O} \quad \overset{\text{NaOH + H}_2\text{O}}{\text{in vitro}} \quad \overset{\text{Lactonase}}{\text{in vivo}} \quad \text{C OOH} \]

\[\text{CH}_2 \]

\[\text{CH}_2 \quad \text{OH} \]

GBL

GHB
Gamma Butyrolactone (GBL)
Slang Names:
Gamma Butyrolactone or Dihydro Furanone

- Blue Nitro
- Firewater
- Furanone Extreme
- Gamma G
- GBL
- GH Release
- Insom-X
- Invigorate
- Jolt
- Liquid Libido
- Regenerize
- ReneTrient
- Revivarant
- Revivarant-G
Renewtrient and Blue Nitro, GHB precursors, have been removed from the market.
Slang Terms:
1,4 Butanediol or Tetramethylene glycol

- Biocopia PM
- Borametz
- BVM
- Enliven
- FX
- NRG3
- Inner G
- Thunder Nectar
- Pro G
- Promusol
- Rest-eze
- Revitalize Plus
- Serenity
- SomatoPro
Incidence: GHB and Precursors

Source Undetermined
Pathology

- Structurally similar to GABA
- Stimulates GABA_B receptors
- Influences dopamine release from substantia nigra
- Readily crosses the BB barrier
GHB / Analogs: Clinical Presentation

- Vomiting, Coma, Bradycardia
- Myoclonic jerking
- Loss of protective airway reflexes
 - Aspiration risk
- Hypothermia, Mild respiratory acidosis
- HOTN when combined with ethanol
Effects

“DESIRED”
- Euphoria
- Mood elevation
- Hallucinations
- GH-Muscle growth?
- Amnesia

UNDESIRED
- Decreased HR, RR
- Coma
- Excessive salivation
- Absence-like sz’s
Emergency Department (ED) Course of Gamma Hydroxybutyric Acid (GHB) Intoxication Study

<table>
<thead>
<tr>
<th>Study</th>
<th>Intubated</th>
<th>Duration of Intubation</th>
<th>Time in ED if Not Admitted</th>
<th>Number Admitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chin et al. (n = 88)</td>
<td>13 %</td>
<td>179 min</td>
<td>NR</td>
<td>11 %</td>
</tr>
<tr>
<td>Mahon et al. (n = 8)</td>
<td>50 %</td>
<td>80 min</td>
<td>NR</td>
<td>0 %</td>
</tr>
<tr>
<td>Li et al. (n = 7)</td>
<td>57 %</td>
<td>210 min</td>
<td>360 min</td>
<td>43 %</td>
</tr>
<tr>
<td>Garrison & Mueller (n = 78)</td>
<td>10 %</td>
<td>NR</td>
<td>180 min</td>
<td>4 %</td>
</tr>
</tbody>
</table>
Case Study

- 26 y/o F with chronic insomnia doubled her dose of Blue Nitro (GBL) : 3 oz.
 - Vomiting within 15 minutes
 - Pt was unresponsive within 30 minutes
 - Myoclonic jerking
 - EMS was called
 - VS: BP 120 / 70, HR 50, RR 22, T 35
Case Study continued …..

- Unresponsive to pain, GCS 3.
- CT scan normal, glucose 125
- No response to naloxone or flumazenil
- Woke up within 4 hours
- Discharged
- Urine Toxicology screen negative
<table>
<thead>
<tr>
<th>Kinetics Aspect</th>
<th>Time/Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset</td>
<td>15 minutes</td>
</tr>
<tr>
<td>Coma</td>
<td>within 30 minutes</td>
</tr>
<tr>
<td>Peak</td>
<td>1 hour</td>
</tr>
<tr>
<td>T 1/2</td>
<td>Short</td>
</tr>
<tr>
<td>Duration</td>
<td>1 to 6 hours (Average 2.5 hr)</td>
</tr>
<tr>
<td>Most patients</td>
<td>require < 5 hr observation</td>
</tr>
</tbody>
</table>
Emergence Delirium

- Myoclonic jerking motions
- Confusion, agitation, combativeness
 - Transient symptoms (< 30 minutes)
 - Symptoms worsen with stimulation
- Treatment
 - Supportive Care
 - Minimize stimulation. “Back off”
GHB / Analogs: Diagnosis

- History of use and circumstances
- Clinical Presentation
- Short Duration
- Role of Laboratory
 - Suspected assault
 - Obtain sample within 12 hours
 - National Medical Laboratories
GHB / Analogs: Treatment

- **Supportive Care**
 - Approximately 35% patients require airway protection

- **Gastrointestinal Decontamination**
 - Limited Value
 - Consider Charcoal in massive ingestions

- **Education regarding Dependence**
GHB Dependence : Case Study

- 29 year old male started taking GHB for the "anabolic effects" 2 yrs ago
- Gradually increased dose to 4 to 6 "capfuls" every 4 hours
- Discontinued the GHB cold turkey
- Arrived in ED 24 hr after his last dose
Case Study continued ….

- Patient was highly agitated
- Visual and auditory hallucinations
- Delusional, paranoid
- Tremulous, diaphoretic

- VS: HR 110, BP 160 / 112, T 99.1
Case Study continued ...

Patient received:
- Ativan: 90 mg in the first 24 hours
- Phenobarbital, Haloperidol

10 day withdrawal course

Discharged symptom and drug free
GHB Withdrawal

- Similar to ETOH and sedative-hypnotic withdrawal.

- Symptoms start within a few hours of discontinuation.

- Seen with long-term use or daily use.
GHB Withdrawal: Clinical Presentation

Onset: 1 to 6 hours

Progression of sx's over 1 to 3 days

Symptoms
 - Agitation, hallucinations, paranoia
 - Tremulous, diaphoretic
 - Tachycardic, hypertensive
 - Hyperthermia, Rhabdomyolysis possible

Duration: 5 to 15 days
GHB Withdrawal: Management

- **AGGRESSIVE TREATMENT EARLY**

- Benzodiazepines
 - High doses may be required

- Barbiturates

- Antipsychotics

- Unproven Therapy
 - Baclofen (GABA-B agonist)
Stimulants of Abuse

- Methamphetamine
- Methylene dioxymethamphetamine: MDMA (Ecstasy)
- Cocaine
- Ketamine / PCP (phencyclidine)
- Dextromethorphan
Rave Party : Case Study ...

18 year old F was at a Rave party with a friend. She was drinking ethanol and using the following:

- **Midnight** 1 tablet of Ecstasy
- **3 am** Snorted 1 line of Ketamine
- **5 am** Drank a “capful” of GHB

At 6:30 am patient found slumped in bathroom, cyanotic. EMS called.
Case Study continued ….

- In ED, comatose but not cyanotic.
- Intubated for airway protection.
- No response to flumazenil or narcan
- VS: HR 58, BP 110 / 60, RR 16, p 5mm, T 37

- ICU admission. Woke up at 12 hours
- Extubated, discharged
Ketamine: Clinical Presentation

- Dissociative anesthetic

- Clinical Presentation
 - Separation of perception and sensation
 - Nystagmus, hallucinations, lethargy, sz
 - Tachycardia, HTN, RR depression
 - Hyperthermia

- Duration
 - 2 to 4 hours
Ketamine Treatment

- Supportive
- Sedation
Phencyclidine Effects

- Tremors, agitation, hallucinations: visual and auditory.
- Tachycardia, HTN.
- Wernicke-Korsakoff syndrome.

Treatment is same as for ketamine
Methamphetamine

- First synthesized by a Japanese pharmacologist in 1893
- Ephedrine most common precursor
- Red phosphorus-hydriotic acid most common reduction method.
- D-isomer: CNS stimulant effects.
- L-isomer: peripheral sympathomimetic activity.
Structures

- Phenethyllamine
- Amphetamine
- Methamphetamine
Production

- Ephedrine
- Methamphetamine
Pathology

- Increase release of neurotransmitters from nerve terminals.
- Serotoninergic and dopaminergic ATP decrease.
- 5HT and D2 depletion.
- Apoptosis
- Endothelial injury.
- Reactive oxygen species.
Model of Methamphetamine Neurotoxicity

O_2, H_2O_2, OH, NO

DNA Damage

P53 Regulated Genes
- Bax

\uparrow P53

\uparrow ROS

Terminal Degeneration Apoptosis

\downarrow Bcl-2

\uparrow Bax/Bcl-2

Cytochrome Release

\uparrow Caspase Activation

Lena Carleton, University of Michigan
A: Acute overdose toxic model
e.g. 4 x 5 mg/kg

- Entry into cells by DAT and cationic lipophilicity
- Enters intracellular organelles including mitochondria and vesicles
- Raises organelle pH and alters enzyme activity. DA released from vesicles and oxidized
- Loss of DA function
- Mitochondrial permeability transition pore opens
- \(\uparrow \) Ca

Cell death

B: Chronic binge (continuous) model
e.g. 15 mg/kg/day \times 14 \text{ days}

- Increased glutamate release
- Increased DA release
- Increased Ca\(^{2+}\) efflux
- Increased RONS

Apoptotic cascades

- AIF cytochrome C
- Caspase 9

Source Undetermined
Signs and Symptoms

- **Action phase**
 - Skin picking
 - Head banging
 - Pacing
 - Paranoid psychosis
 - Extreme suspiciousness

- **Resolution phase**
 - Exhaustion
 - Fatigue
 - Sleep
 - Depression
Other Signs and Symptoms

- Pulmonary hypertension
- Dyspnea
- Pleuritic chest pain
- Anorexia/weight loss
- Ulcers
- Rhabdomyolysis
TESS DATA

Methamphetamine Exposures Without Concomitants, 2001
(Cardiovascular Effects)

Source: American Association of Poison Control Centers Toxic Exposure Surveillance System, 2001
Methamphetamine and the ED

- 6 months UCDMC ED ending February 1997
- 461 methamphetamine (+) patients
- Caucasian males without health insurance
- Increase use of ambulances and acute hospitalization
- Significant association with trauma: blunt 33% and penetrating 4%
- Altered LOC (23%), Abd pain (13%), suicide (8%), chest pain (8%), skin infections (6%)
Methamphetamine and Trauma

- UCDMC Level 1 Trauma Center
- Retrospective Study 1989 to 1994
- Results:
 - 18,004 pts; 3.1 / 1000 population per year
 - + methamphetamine defined as urine > 1000 ng / ml
 - Rates increased from 7.4 to 13.4 %
 - Cocaine rates 5.8 to 6.2 %
Methamphetamine and Trauma

- Decrease in ethanol from 43% to 35%
- Meth (+) most common in Caucasian or Hispanic
- Cocaine (+) most common African American
- Meth (+) in MVA or MCA’s
- Cocaine (+) in assaults, GSW’s or stab wounds

Schermer and Wisner, J Am Coll Surg 1999; 189: 442-449
Treatment

Don’t forget to r/o other causes:

– Look-alike diseases: e.g. Pheo, scorpion bites.

– Drugs: e.g. LSD, psilocybin-hallucinations, etc.

– Elevated temperature: e.g. malignant hyperthermia, NMS, anticholinergic syndrome.

– Seizures: e.g. cocaine, ETOH withdrawal.

– CVS: e.g. GHB withdrawal.
Treatment (cont.)

- Control stimulant effects
- Decontamination
- Control hyperthermia: how?
- Control seizures: how?
- Be careful of physical restraints.
- Treat psychiatric conditions.
What is Ecstasy (MDMA)?

- 3,4-Methylenedioxymethamphetamine
- Sympathetic effects mild in low doses
- Potent releaser of serotonin

Overdose
- Symptoms similar to amphetamines
- Risk of serotonin syndrome
- Risk of hyponatremia
 - SIADH and / or increased water intake
History of Ecstasy

- 1914: Patented as Appetite suppressant
 - *Never Marketed*
- 1970’s: Use by psychiatrists
- 1980’s: “LSD of the 60’s”
- 1990’s: Increasing abuse, Rave party use
- 2000: Continuing abuse
- Illicit adulterants common
Illicit Ecstasy Tablets

Drug Enforcement Agency, Wikimedia Commons
Pathology

- Similar to other amphetamines in causing release of catecholamines.
- Alpha and beta-adrenergic agonist.
- Can cause SIADH by an unclear mechanism.
Effects

DESIRED
- Increased energy
- Euphoria
- Empathy
- Visual hallucinations

UNDESIRED
- Jaw clenching
- Paranoia
- Hot / cold flashes
- Hyperpyrexia
- Seizures
Clinical Signs and Symptoms

- Rhabdomyolysis
- Hyponatremia
- DIC
- Renal failure
- Hepatotoxicity
- Aplastic anemia : rare
Illicit MDMA Adulterants

Assayed tablets have contained:

- MDMA
- MDMA with Caffeine
- Dextromethorphan 122 to 143 mg / tablet
- Caffeine
- Ephedrine, Pseudoephedrine, PPA
- Placebo
Treatment

- Similar to amphetamines and derivatives
- Controlling cerebral edema from hyponatremia important.
- Pneumomediastinum also an issue
- Controlling hyperthermia predicts survival in several studies
Dextromethorphan: Case Study

14 year old M ingested 30 Coricidin tablets to get high. At 2.5 hours:
- Lethargic, slurred speech, hallucinating
- Flushed, tremulous
- Nystagmus present

- VS: HR 114, BP 170 / 100, T 97.8, p 7mm
Dextromethorphan (DXMF) Abuse

- Many DXMF containing OTC products
- Coricidin: many combinations
 - DXMF 30 mg, CTM, APAP, PPA, etc.
- Teenage DXMF abuse is rising
- Easy OTC availability
Dextromethorphan

- Therapeutic doses: mild CNS effects
- High doses: significant CNS effects
- Specific DXMF receptors (opiate - sigma)
 - Anticholinergic-like symptoms
 - Hallucinations, delusion, dysphoria
- Opiate kappa and mu receptors
 - Opiate effects
Dextromethorphan: Treatment

- Gastrointestinal decontamination
- Narcan may be useful
- Supportive Care
- Laboratory
 - Rule out aspirin and acetaminophen
Mescaline

Source Undetermined
Characteristics

- Derived from peyote cactus.
- Hallucinogen.
- Can mimic an acute gastroenteritis
Mescaline Treatment

- Supportive
Flunitrazepam

- Used throughout Europe.
- Not approved in the US.
- One of the “date-rape” drugs.
- By weight 10x more potent than diazepam.
- Produces effects within 15 mins.
New Rohypnol tablets include a dye that make the drug visible if slipped into a drink
Pathology

- A benzodiazepine working on the GABA_A receptor.

- Lipid soluble rapidly crossing the BB barrier.
Effects

“DESIRED”
- Euphoria
- Hallucinations
- Disinhibition
- SM relaxation
- Sedation
- Memory impairment

UNDESIRED
- Hypotension
- Drowsiness
- Apnea
- Urinary retention
- Tremors
Supportive care.

AC, lavage (use with caution, may be contraindicated)

Benzodiazepine antagonists (flumazenil):

NO!! (very few indications).
Inhalant Abuse

- Freon Propellants
- Xylene, Toluene
- Gasoline Fumes

United States Department of Defense, Wikimedia Commons
Anticholinergic Abuse

- Antihistamines
- Jimson Weed

Anticholinergic Syndrome:
- Mad as a hatter
- Blind as a bat
- Hot as Hades
- Dry as a bone
- Red as a beet
Summary

- **GHB / GHB Analogs**
 - Classic Symptoms in Overdose
 - Withdrawal Symptoms

- **Rave Parties**
 - Multiple drugs commonly used

- **Rising OTC Dextromethorphan Use**
 - Rule out aspirin and acetaminophen
Summary

- Methamphetamine is a major problem
- Older drugs of abuse have not gone away
 - PCP
 - LSD
 - Heroin
 - Cocaine
 - Ethanol
 - Marijuana