Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b))
 *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should do your own independent analysis to determine whether or not your use will be Fair.
Basics of Toxicology

Medical Student Lecture Series
Emergency Medicine

revised 6/2009
Objectives

- Describe the role of GI decontamination
- Recognize common toxidromes
- Recognize substances for which specific antidotes exist
- Initiate ED management of a patient with an overdose
The undifferentiated patient

- A patient is dropped off at the ED door. He is minimally responsive. His friends say they think he took something and drive off...

- Where do we start?
Approach to (possible) Tox patient

- Simultaneous treatment & diagnosis
- Immediate action:
 - ABC(D), IV / O2 / monitor
- Thinking:
 - Is this a tox problem?
 - If yes, are there complicating factors?
 - Got drunk and fell down, now with head injury?
 - Resources to get a history?
Approach to (likely) Tox patient

- You’ve considered a differential and you think it is a toxicologic issue

- Immediate action:
 - Supportive therapy (airway etc)
 - Decontamination

- Thinking:
 - Toxidrome present?
 - What more information do I need?

- Definitive Management
 - Is there an antidote or specific treatment?
Overdose History

- Time of ingestion
- Talk to witnesses
- Get pill bottles & count!
- Assume common co-ingestants
 - Alcohol
 - Acetaminophen
 - Aspirin
Decontamination

- GI exposure
 - Most common route (75% of toxic exposures)
 - Prevent absorption
- Topical exposures
 - Remove clothing
 - Wash skin
- Enhance elimination
 - Whole bowel irrigation
 - Sorbitol
 - Diuresis / ion trapping
 - Hemodialysis
GI Decontamination

Activated Charcoal
- Absorbs up to 60% of ingestant
- 1 gm/kg +/- Sorbitol
- Maximal effect if given early (<1 hr)
- Will not bind – metals, electrolytes, acids

Contraindications
- Depressed MS – Intubate to avoid aspiration
- Bowel obstruction / perforation
- Acid/ alkali ingestion
GI Decontamination –

- Rare interventions
 - Gastric lavage
 - Early presentation of potentially lethal OD
 - e.g. tricyclics, iron, CCBs, B-blockers
 - High Risk – aspiration / perforation / airway compromise
 - Syrup of Ipecac – Rarely used now
 - Induces vomiting & eliminates less than charcoal
 - Cardiomyopathy risk
 - Whole bowel irrigation
 - Sustained release preparations
 - Body packers
2 am Toxicology Resources

- Poison Control
 - 1-800-POISON1
- Micromedex
 - General drug info
- Poisindex
 - Overdose management
- Identidex
 - Imprint identification

Parhamr, Wikimedia Commons
Treatment Goals with OD

- ABC’s
- Identify (if possible) substances
- Reduce absorption
- Enhance elimination
- Specific antidotes (if possible)
 - Relatively few but important to know
- Supportive care
Classic Toxidromes

Hint for exam:
Know these
- Narcotic
- Sympathomimetic
- Anticholinergic
- Cholinergic
Narcotics

- Natural & synthetic compounds which mimic endogenous endorphins
- Heroin, Morphine, Dilaudid, Demerol, Vicodin, Methadone, Fentanyl (China White), Oxycontin
- Different pharmacologic parameters
- Common drugs of abuse
- Street drugs – adulterated (mixed OD)
Narcotics – Clinical picture

<table>
<thead>
<tr>
<th></th>
<th>Temp</th>
<th>HR</th>
<th>RR</th>
<th>Pupils</th>
<th>BS’s</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcotic</td>
<td>---</td>
<td>↓</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓↓</td>
<td>---</td>
</tr>
<tr>
<td>Sympathomimetic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-cholinergic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholinergic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Narcotics - treatment

- Support ABCs
- Narcan 2mg IV q2min until effect
 - Comes in 0.4mg vials!
- Can require massive doses
- IV / IM / SQ / ET routes
- Short acting & may require repeat doses or IV drip
Sympathomimetics

- Fight or flight system
- Drug activate adrenergic nervous system
- Cross-activation of dopaminergic → euphoria & hallucinations
Sympathomimetics – clinical picture

<table>
<thead>
<tr>
<th></th>
<th>Temp</th>
<th>HR</th>
<th>RR</th>
<th>Pupils</th>
<th>BS’s s</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcotic</td>
<td>---</td>
<td>↓</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓↓</td>
<td>---</td>
</tr>
<tr>
<td>Sympathomimetic</td>
<td>↑</td>
<td>↑↑</td>
<td>---</td>
<td>↑</td>
<td>---</td>
<td>sweaty</td>
</tr>
<tr>
<td>Anti-cholinergic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholinergic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Common sympathomimetics

- Cocaine
- Caffeine
- Ephedrine
- MDMA (ecstasy)
- LSD (prominent hallucinations)
- Pseudephedrine (Sudafed)
Sympathomimetics - treatment

- ABCs
- Supportive care / time
- Cocaine – avoid B-blockers
Anticholinergic Toxidrome

- Antagonism of the cholinergic nervous system (parasympathetic)
- Sympathetic disinhibition & loss of parasympathetic functions
- Common medication side-effect
- Less commonly abused class of drugs
Anticholinergics - clinical picture

<table>
<thead>
<tr>
<th></th>
<th>Temp</th>
<th>HR</th>
<th>RR</th>
<th>Pupils</th>
<th>BS’ s</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcotic</td>
<td>---</td>
<td>↓</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓↓</td>
<td>---</td>
</tr>
<tr>
<td>Sympathomimetic</td>
<td>↑</td>
<td>↑↑</td>
<td>---</td>
<td>↑</td>
<td>---</td>
<td>sweaty</td>
</tr>
<tr>
<td>Anti-cholinergic</td>
<td>↑</td>
<td>↑</td>
<td>---</td>
<td>↑</td>
<td>↓↓</td>
<td>dry</td>
</tr>
<tr>
<td>Cholinergic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anticholinergics

- Blind as a bat (mydriasis)
- Hot as hare (flushed & warm)
- Mad as a hatter (delirium)
- Dry as a bone (membranes & axillae)

- “Can’t see, can’t pee, can’t s—t, can’t spit”
Common anticholinergics

- Atropine
- Antihistamines (Benadryl)
- Phenothiazines (antiemetics)
- Tricyclic antidepressants
- Jimsonweed (Datura)
Anticholinergics - Treatment

- ABCs
- Decontamination
- Supportive / time
- Urinary drainage
Cholinergic Toxidrome

- Increased acetylcholine activity
- Nicotinic NS: increased nerve transmission and muscle activation
- Muscarinic NS: liquid management
- Rarely abused
- Occupational exposures - insecticides
Cholinergics – clinical picture

- **Nicotinic effects**
 - Tachycardia, muscle fasciculations, weakness (nerve transmissions can’t get through), respiratory depression, paralysis, miosis

- **Muscarinic effects - SLUDGE**
 - Salivation
 - Lacrimation
 - Urination
 - Defecation
 - GI upset
 - Emesis
Cholinergics – clinical picture

<table>
<thead>
<tr>
<th></th>
<th>Temp</th>
<th>HR</th>
<th>RR</th>
<th>Pupils</th>
<th>BS’s</th>
<th>Skin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narcotic</td>
<td>---</td>
<td>↓</td>
<td>↓↓</td>
<td>↓↓</td>
<td>↓↓</td>
<td>---</td>
</tr>
<tr>
<td>Sympathomimetic</td>
<td>↑↑</td>
<td>---</td>
<td>---</td>
<td>↑</td>
<td>---</td>
<td>sweaty</td>
</tr>
<tr>
<td>Anti-cholinergic</td>
<td>↑</td>
<td>↑</td>
<td>---</td>
<td>↑</td>
<td>↓</td>
<td>dry</td>
</tr>
<tr>
<td>Cholinergic</td>
<td>---</td>
<td>↓</td>
<td>---</td>
<td>↓</td>
<td>↑↑</td>
<td>sweaty</td>
</tr>
</tbody>
</table>
Common Cholinergics

- Organophosphate insecticides
- Nerve gas (i.e. Sarin, VX)
- Myasthenia Gravis meds
- “Green tobacco sickness”
 - Nicotine poisoning during harvest
Cholinergics - Treatment

- ABCs
- Decontamination
- Atropine 2 mg q 5 minutes until secretions dry (massive doses)
- Pralidoxime (2PAM) if organophosphates
- Supportive care / time
Case 1

- 2 yo M got into older sister’s medication. Mother brings to ED stating he’s had an allergic reaction.
- P145 R25 T100.1 Skin flushed but no urticaria or rash. Seems to be picking at the air. Pupils dilated. Dry diaper.
- Nurses requesting Benadryl for his allergic reaction.
- Is this a good idea? What’s going on?
Case 1 cont

- Anticholinergic toxidrome
- Sister’s medication → Detrol
 - Anticholinergic
- Benadryl also anticholinergic!

- Treatment?
Case 2

- 15 people from a local government building with vomiting and weakness.
- 2 patients with respiratory distress require intubation. Copious oral secretions are noted.

What’s going on?
Case 2 cont

- Cholinergic toxidrome
 - SLUDGE
- Nerve gas / deliberate exposure
 - 1995 – Sarin in Tokyo subway
- Treatment?
Classic Ingestions
Acetaminophen
Acetaminophen

- Common “cry for help”
- Ubiquitous
 - Accidental OD’s – “multi-symptom cold meds”
 - Common co-ingestant
- Initially asymptomatic or mild GI upset
- Quiescent period of a few days after intoxication (LFTs may be elevated)
- Delayed & sometimes fatal liver toxicity
Acetaminophen

- Metabolite toxic to hepatocytes causing hepatic necrosis
- At therapeutic doses, glutathione neutralizes metabolite and prevents toxicity
- At high doses glutathione depleted and toxicity results
Acetaminophen

- Rumack-Matthews Nomogram
- Predicts hepatic toxicity based on level and time of overdose
- Toxic threshold 140 mcg/ml
Specific intoxications: Tylenol

The rule of 140

- Toxic dose is 140 mg/kg
- Toxic level at 4 hours is 140 mcg/ml
- First dose of NAC is 140 mg/kg po
 (subsequent 17 doses are 70mg/kg)

- If 15 kg child, how many ES Tylenol pills (500 mg each) for toxic level?
Acetaminophen

- Treatment: N-acetylcysteine
- Replenishes glutathione in the liver
- Tastes AWFUL
 - May require NGT administration
 - Newer IV form (Acetadote – 2004)
Salicylates
Salicylates

- ASA, Peptobismol, Oil of wintergreen

- 1 tsp = 7gm salicylate (peds lethal dose)

- Symptoms onset within 1 hour

- Enteric-coated delays absorption

- Gastric bezoars also delay absorption

- Renal clearance
Salicylates

- Symptoms
 - Vomiting, tinnitus, hyperpnea, fever (mild)
 - Acidosis, AMS, seizures and shock (severe)
 - **Metabolic acidosis w/ respiratory alkalosis**
- Toxicity begins at 50mg/kg (acute)
Specific intoxications: Salicylates

- General guidelines for severity
 - Mild <300 mg /kg ingested
 - Moderate 300-500 mg/kg
 - Severe / potentially lethal > 500 mg/kg

- Serum level > 30 mg/dl at 6 hrs - toxic

- Done nomogram
 - Historical interest only
 - Serum level not predictive of degree of toxicity
Salicylates - Treatment

- Increased elimination in urine
 - Urine alkalinization
 - 3 amps of bicarb in 1 L of D5W
 - Hemodialysis indicated if
 - Coma, seizure
 - Renal, hepatic, or pulmonary failure
 - Pulmonary edema
 - Severe acid-base imbalance
 - Deterioration in condition
Tricyclic Antidepressants
Tricyclic antidepressants

- Depression, sleep, & pain disorders
- Less common due to SSRI prevalence
- High toxicity in overdose
Tricyclic antidepressants

- Anticholinergic toxidrome plus
- Cardiac Dysrhythmias
 - Quinidine-like (Ia) effects on Na channels
 - Sinus tach, Vfib, Vtach
- Seizures
Tricyclic antidepressants

Screening EKG

- Widened QRS
 - > 100ms – sz & dysrhythmia risk
- R wave in aVR and S waves in I, aVL
- Prolonged QTc
Electrocardiographic changes associated with tricyclic antidepressant overdose. The QRS complex is prolonged with delayed right ventricular activation and intraventricular conduction delay, which results in rightward shift in the terminal 40 msec frontal plane QRS vector. In qualitative terms, this shift manifests as a deep, slurred S wave in leads I and AVL, and an R wave in lead AVR (blue arrows).
Tricyclic antidepressants - Tx

- **ABCs**

- **Bicarbonate drip**
 - Reduces cardiac effects

- **Control seizures**
 - Benzodiazepines
 - Phenobarbital
 - Avoid phenytoin – risk of dysrhythmias
Case 3:

- 27 yo F brought in by family. Confused and vomiting. “She took some Tylenol this morning” (about 4 hours ago)
- P125 BP135/65 T99.4 Warm, dry skin. Oriented x 2. Sometimes nonsensical answers. +gag reflex. Dilated pupils.
- What do you need to know?
- Does this fit with a Tylenol OD?
Case 3

Gary Seidman, Flickr
Case 3

- What are your initial orders?
 - Hint: ABC, IV, O2, monitor
 - What labs / tests do you want?
 - Medications?
Case 3

- Acetaminophen level – 375 mg/dl
- What next?
Case 4

- 32 yo M brought in because of violent behavior
- Agitated and combative
- P125 BP 160/95 T99.4
- Warm & sweaty. Dilated pupils. Exam otherwise non-focal
- Differential?
Case 4

- UDS – cocaine positive
- Treatment?
Slides & content for this lecture developed by Stacey Noel, MD
With revisions by Colin Greineder, MD & Laura Hopson, MD