Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Attribution License**: Works that can be used, shared, and adapted.
- **Creative Commons – Attribution Share Alike License**: Works that can be used, shared, and adapted.
- **Creative Commons – Attribution Noncommercial License**: Works that can be used, shared, and adapted.
- **Creative Commons – Attribution Noncommercial Share Alike License**: Works that can be used, shared, and adapted.
- **GNU – Free Documentation License**: Works that can be used, shared, and adapted.

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Hemostasis: Platelet and Coagulation Disorders

Joseph Hartmann D.O.
Normal Hemostasis

vascular

platelets

coagulation pathway

Tleonardi, Wikimedia Commons
Kelvinsong, Wikimedia Commons
GrahamColm, Wikimedia Commons
Coagulation Cascade

Contact activation (intrinsic) pathway
- Damaged surface
 - XII → XIIa
 - XI → XIa
 - IX → IXa
 - VIIIa
 - X → Xa → Va
 - Prothrombin (II)
 - Fibrinogen (I)

Tissue factor (extrinsic) pathway
- Trauma
 - VIIa → VII
 - Platelet activation
 - Thrombin (IIa)
 - Fibrin (Ia)
 - XIIIa
 - Cross-linked fibrin clot

Common pathway
Coagulation Cascade

1. Vascular Phase
 - Spasm in damaged smooth muscle

2. Platelet Phase
 - Platelet aggregation and adhesion

3. Coagulation Phase
 - Activation of clotting system and clot formation

4. Clot Retraction
 - Contraction of blood clot

5. Clot Destruction
 - Enzymatic destruction of clot

Source undetermined
Extrinsic Pathway

- Mediated by tissue factors
- Affords a rapid response
- Prolonged prothrombin time (PT)
- Involves factors II, VII, IX, and X
 - Vitamin K dependent (coenzyme)
- Inhibition of vitamin K with warfarin
Intrinsic Pathway

- Mediated by surface contact factors
- Slower responder
- Prolonged partial thromboplastin time (aPTT)
- Involves factors VIII, IX, and XI
 - Accounts for 99% of inherited bleeding disorders
 - Hemophilia A – factor VIII
 - Hemophilia B – factor IX
 - Hemophilia C – factor XI
Prolonged PT and aPTT

Thrombin and fibrinogen form insoluble clot
Platelet Disorders

- Thrombocytopenia = platelet count < 100,000 cu mm
- Platelet count < 50,000 variable risk
- Platelet count < 20,000 transfusion appropriate
- Platelet count < 10,000 spontaneous hemorrhage
- Platelet dysfunction = mucus membrane bleeding
 - Epistaxis
 - Gingival
 - Vaginal bleeding
 - Petechiae, purpura
Platelet Disorders

- Immune (Idiopathic) Thrombocytopenic Purpura (ITP)
- Thrombotic Thrombocytopenic Purpura (TTP)
- Hemolytic-Uremic Syndrome (HUS)
- Heparin –Induced Thrombocytopenia (HIT)
- Drug-Induced Inactivation of Platelets
Immune Thrombocytopenic Purpura

- Acquired autoimmune disorder
 - Thrombocytopenia with normal bone marrow

- Acute form
 - Children 2-6 yrs. old
 - Associated with prior viral illness (<3 wk)
 - Resolution > 1-2 months, often quite longer
 - Spontaneous resolution in 90%
Chronic form

- Adults: women > men or women < men
- Associated with autoimmune disorder (SLE, HIV)
- Resolution is rare
- Thrombocytopenia < 20,000
- Mucosal bleeding
Immune Thrombocytopenic Purpura

- Management
 - Do not transfuse platelets
 - Steroids
 - Splenectomy
 - Immunoglobulin therapy
 - Plasmapheresis
Thrombotic Thrombocytopenic Purpura

- Thrombocytopenia + microangiopathic hemolytic anemia

- Classic pentad -
 - Fever, anemia, thrombocytopenia, renal failure, neurologic symptoms

- Associations –
 - Autoimmune – AIDS, lupus, scleroderma, Sjogren
 - Pregnancy
 - Rx – cyclosporine, tacrolimus, quinidine
Thrombotic Thrombocytopenic Purpura

- Laboratory findings
 - Schistocytes (helmet cells)
 - Intravascular hemolysis – peripheral smear
 - Platelets < 20,000
 - Increased reticulocyte count
 - Increased indirect bilirubin
 - Increased LDH
 - Decreased haptoglobin
- Tx: urgent hematology consult, plasmapheresis, steroids
Hemolytic-Uremic Syndrome

- Thrombocytopenia + microangiopathic hemolytic anemia + acute renal failure
- Primarily in children 6 mo – 4 yr
 - Most common cause of acute renal failure in children
- Associations –
 - *E. coli* H7:0157 → Shiga-like toxin
Hemolytic-Uremic Syndrome

- **Presentation** – bloody diarrhea and seizure
 - Pentad of TTP
 - TTP – neurologic symptoms more pronounced
 - HUS – renal dysfunction more pronounced

- **Laboratory findings**
 - SCHISTOCYTES
 - TTP lab findings
 - Worse renal function parameters, i.e. renal failure
Hemolytic-Uremic Syndrome

- **Treatment**
 - Supportive, dialysis (?), do not administer antibiotics.

 Schistocytes + child = HUS
 Schistocytes + adult = TTP

 Schistocytes + neurologic dysfunction = TTP
 Schistocytes + renal dysfunction = HUS
Heparin-Induced Thrombocytopenia

- Type I
 - Platelet count rarely < 100,000
 - Occurs within first few days
 - Benign – not associated with thrombosis
 - Platelet count normalizes regardless of heparin use / disuse
Heparin-Induced Thrombocytopenia

- **Type II**
 - Autoimmune and consumptive
 - Occurs day 4-14
 - 1/3 of cases associated with thrombosis
 - Must d/c heparin No LMW heparins
 - No platelet transfusions unless life-threatening bleeding
 - Treat with direct thrombin inhibitors
 - Hirudin (Revasc)
 - Lepirudin (Refludan)
 - Argatroban (Novastan)
Drug-Induced Inactivation of Platelets

- Most common
 - Quinidine / quinine, sulfonamides. Phenytoin, ASA

- Less common
 - Chronic EtOH, NSAID’s (indomethacin), valproic acid

- Development of antiplatelet antibodies

- Treatment
 - Recovery within one week
 - Steroids
 - DDAVP / platelet transfusions for severe hemorrhage
Coagulation Disorders

- Hemophilia A (classic hemophilia)
- Hemophilia B (Christmas disease)
- Disseminated Intravascular Coagulation
- von Willibrand’s Disease
- Medication toxicity
Hemophilia A (Classic Hemophilia)

- X-linked recessive bleeding disorder due to deficiency of factor VIII function
- Spontaneous genetic mutations occur accounting 1/3 of new cases
- Severity of disease dependent on % factor VIII activity function
 - Classified as mild, moderate, severe
Hemophilia A

- Severe – spontaneous bleeding
 - < 1% factor VIII activity
- Moderate – occasional spontaneous bleeding but more commonly follows trauma / surgery
 - 1% - 5% factor VIII activity
- Mild – occasional hemorrhage after dental extractions, menses
 - >5% factor VIII activity
90% of bleeding events involve

- Joints – knee involvement > 50%
- Intramuscular – neuro-vascular compromise possible

Bleeding manifestations can be delayed for hours – though normally seen within 8 hrs

- Minor lacerations and abrasions not normally problematic
- Head injuries are treated without waiting for CT
- Believe the patient!
Laboratory findings

- PTT increased *unless* > 30% factor activity present
- Specific factor assays necessary
- Inhibitor may be present in 10-25% of patients
 - Antibody against factor VIII
Hemophilia A

- **Treatment**
 - Recombinant factor VIII – therapy of choice - $$$$$
 - each IU/kg increases factor VIII by 2%
 - Factor VIII concentrate – pooled donors (infection risk)
 - Major life-threatening bleeding 50 IU/kg initially
 - Hemarthrosis / muscle bleeding 25-50 IU/kg
 - Minor bleeding 12.5 – 25 IU/kg
 - Desmopressin (DDAVP) – mild to moderate disease
 - Stimulates increase of functional factor VIII by 3-5 fold
 - Onset 30 min; dose 0.3 microgram/kg IV
Hemophilia A

- Treatment (cont)
 - Fresh frozen plasma contains one IU/ml of factor VIII
 - 250 ml/bag [14 bags = 3500ml]
 - Cryoprecipitate contains 100 IU of factor VIII per bag
 - 80-100 ml bag [35+ bags = 3500ml]
 - FFP and/or cryoprecipitate should be used only as temporizing measures if recombinant or concentrate factor VIII not available
- Get a consulting hematologist on board early to direct treatment choices and dosing.
Hemophilia B (Christmas disease)

- X-linked recessive bleeding disorder due to deficiency of factor IX function
- Classification is same as Hemophilia A
- Clinical presentation is same as Hemophilia A
- Inhibitor to factor IX found < 2% of patients
Hemophilia B

- **Treatment**
 - Recombinant factor IX, if available
 - Factor IX concentrate (pooled = infection risk)
 - Both factor products increase factor IX by 1% for each IU/kg
 - Fresh frozen plasma contains 1 IU/ml of factor IX
 - Cryoprecipitate - no factor IX
 - Desmopressin (DDAVP) ineffective
Consumptive coagulopathy – hemostasis gone wild

Simultaneous coagulation and fibrinolytic pathways promoting both bleeding and thrombotic components – one predominates

Etiology:
- Infection – most common, esp. gram neg sepsis
- Carcinoma / leukemia
- Trauma, hepatic dz, pregnancy, ARDS, viper envenomation, transfusion reaction
Disseminated Intravascular Coagulation

- Laboratory –
 - PT elevated, PTT often elevated
 - Decreased platelets, fibrinogen
 - Increased fibrin split products and d-dimer (more specific, less sensitive)
 - Fragmented RBC’s → anemia
Disseminated Intravascular Coagulation

- Treatment
 - Supportive aggressive resuscitation
 - IV fluids and RBC transfusion
 - Fresh frozen plasma to replace coagulation factors
 - Two units at a time
 - Cryoprecipitate for fibrinogen replacement
 - Ten bags
 - Platelet transfusion
 - Heparin if thrombosis predominates
 - Ca, leukemia, pregnancy-related
 - Activated protein C, if septic shock
von Willibrand’s Disease

- Most common inherited bleeding disorder

- von Willibrand’s factor (vWF) facilitates platelet adhesion to each other and to damaged endothelium
 - Also, a carrier protein for factor VIII

- Three forms of clinical presentation

- Laboratory – usually normal PT and PTT; bleeding time prolonged; vWF activity low
von Willibrand’s Disease

- **Type I**
 - Mild form = 80% of patients
 - Mucosal bleeding – decrease in vWF (quantitative)

- **Type II**
 - Mild form = 10% of patients
 - Mucosal bleeding – dysfunctional vWF (qualitative)

- **Type III**
 - Severe form = 10% of patients
 - Bleeding episodes resemble hemophilias – no detectable vWF
von Willibrand’s Disease

- **Treatment**
 - Desmopressin (DDAVP) – stimulates endothelial cells to secrete stored vWF
 - 0.3 microgram / kg IV or SC over 30 min q 12 hr
 - Concentrated intranasal form
 - 1 spray in one nostril (150 micrograms) in children > 5 y/o
 - 1 spray each nostril (300 micrograms) in adolescent / adult
 - Factor VIII concentrates 20-30 IU/kg for nonresponder Type I or Type II and III
 - Cryoprecipitate 1-2 bags / 10 kg
Anticoagulant Toxicity

- **Warfarin**
 - Vitamin K 1.0-2.5 mg po
 - 10 mg slow IV for severe hemorrhage
 - Fresh frozen plasma 2-4 units
 - 4-6 units for severe hemorrhage
 - Prothrombin complex concentrate
 - 8.8 units/kg IV up to 500 units
 - Recombinant factor VIIa (NovoSeven)
 - 15-20 micrograms / kg IV over 3-5 min
Heparin Toxicity

- Protamine sulfate
 - 1 mg per 100 units of infused heparin in previous 4 hrs IV over 10 min (no more than 50 mg)
- Low molecular weight heparin (partial reversal)
 - 1 mg per 1 mg of enoxaparin
 - 1 mg per 100 anti-Xa units of dalteparin
Fibrinolytic Hemorrhage

- Cryoprecipitate 10 units IV
- Fresh frozen plasma 2 units IV
- Platelet transfusion 6 units IV (?)
- Aminocaproic acid (Amicar) 6 mg IV or po q 4hr
- Recombinant factor VIIa (NovoSeven)
 - 40-160 micrograms / kg IV over 1-2 min
Bleeding in Hepatic Failure

- Vitamin K 10 mg SC or IV
- Fresh frozen plasma 10-25 ml / kg
- Platelet transfusion
- Desmopressin (DDAVP)
 - 0.3 microgram / kg SC or
 - 0.3 microgram / kg in 50 ml NS IVPB over 30 min
- Cryoprecipitate if fibrinogen levels < 100 mg/dl
Hemodialysis provides transient benefit to platelet function for 24 – 48 hrs

Desmopressin (DDAVP)
- 0.3 micrograms / kg in 50 ml NS IVPB over 30 min

Platelet transfusion

Cryoprecipitate
Drug Inactivation of Platelets

- ASA, NSAID’s, clopidogrel (Plavix), ticlopidine (Ticlid)
 - All inhibit platelet aggregation
- Discontinue agent
- Platelet transfusion
- Desmopressin (DDAVP)
 - 0.3 micrograms / kg in 50 ml NS IVPB over 30 min