Project: Ghana Emergency Medicine Collaborative

Document Title: Acute Congestive Heart Failure

Author(s): Rashmi U. Kothari (Michigan State University), MD 2012

License: Unless otherwise noted, this material is made available under the terms of the **Creative Commons Attribution Share Alike-3.0 License**: http://creativecommons.org/licenses/by-sa/3.0/

We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. These lectures have been modified in the process of making a publicly shareable version. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact **open.michigan@umich.edu** with any questions, corrections, or clarification regarding the use of content.

For more information about **how to cite** these materials visit http://open.umich.edu/privacy-and-terms-use.

Any **medical information** in this material is intended to inform and educate and is **not a tool for self-diagnosis** or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.

open.michigan

Attribution Key

for more information see: http://open.umich.edu/wiki/AttributionPolicy

Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

PD-GOV Public Domain - Government: Works that are produced by the U.S. Government. (17 USC § 105)

PD-EXP Public Domain – Expired: Works that are no longer protected due to an expired copyright term.

PD-SELF Public Domain - Self Dedicated: Works that a copyright holder has dedicated to the public domain.

(c) ZERO Creative Commons – Zero Waiver

(cc) BY Creative Commons – Attribution License

(cc) BY-SA Creative Commons – Attribution Share Alike License

(cc) BY-NC Creative Commons – Attribution Noncommercial License

(c) BY-NC-SA Creative Commons – Attribution Noncommercial Share Alike License

⊚ GNU-FDL GNU – Free Documentation License

Make Your Own Assessment

© FAIR USE

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

Public Domain – Ineligible: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

Fair Use: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair. ²

P=130 RR=32 BP=220/120 P.Oxm=86% → 90%

Differential Diagnosis

- PE
- CHF/Pulmonary edema
- Pneumonia
- COPD
- Pneumothorax
- Pericardial effusion

- History
 - Onset (gradual or sudden)
 - Cough, fever, unilateral leg swelling
 - Orthopnea, PND, DOE, Swelling
 - PMH: CAD, CHF, PE/DVT, ESRD
 - Same it past?

- Physical Exam
 - VS: (T/RR/HR/BP/Pulse Oxm)
 - Neck: JVD
 - Chest: ■ BS, rales, wheezing, rhonchi
 - Heart: Afib, bradycardia, distant HS, S3
 - Extremities: edema, unilateral swelling, cord, tenderness

- PMH: COPD, CHF, CAD, & HTN
- PE: Obese, severe resp. distress
- Chest: ♥ BS, ?rales, ?wheezing
- Cardiac: RRR no Murmur
- Extremities: 2+ bilateral edema

Goal

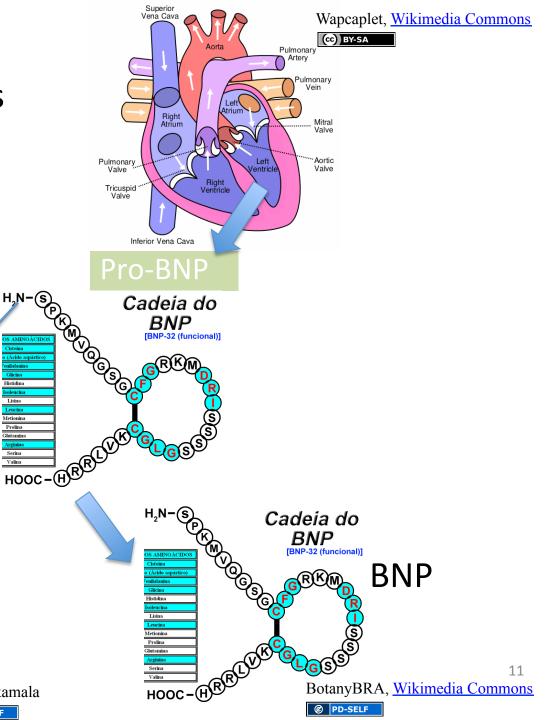
- Review pathophysiology
- Evaluate diagnostic findings
 - H&P, CXR, BNP, U/S
- Evaluate medical management
 - Oxygen delivery, nitroglycerin, lasix, morphine

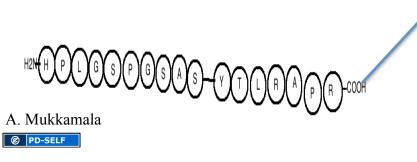
Acute Congestive Heart Failure (CHF)

Definition

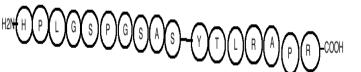
Diagnosis

- History & Physical Exam
- Chest X-ray
- Laboratory tests
- Ultrasound


Diagnosing CHF


Increased Likelihood

Decreased Likelihood


•	Hx CH	F LF	R=5.8
---	-------	------	-------

Myocardial stretch/stress

A. Mukkamala

Ø PD-SELF

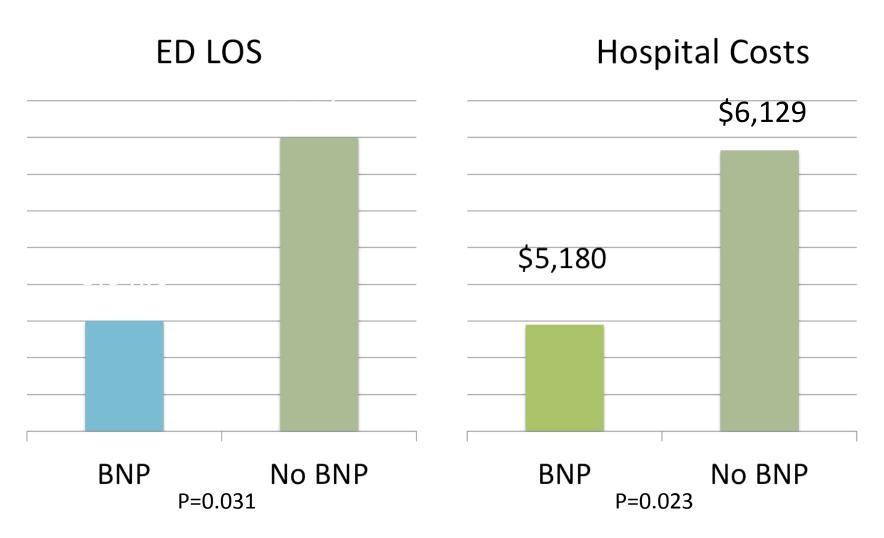
BNP and NT pro-BNP

		BNP I	NT pro-BNP	
AGE	All	<50	50-70	>70
Rule out	<100	<300	<300	<1200
Sens/Spec	90%/74%	99%/85%	99%/85%	97%/55%
Rule in	>400	>450	>900	>4500
Sens/Spec	81%/90%	93%/95%	91%/80%	64%/86%

References:

Korenstein BM Emerg Med 2007 Jannuzi et al Am J Card 2005 Berdague et al., Am Heart J

Impact of High & Low BNP on Pre-Test Probabilities


Pre-test Probability	Post-test Probability for BNP<105 pg/ml	Post-test Probability for BNP >300 pg/ml
10%	2%	46%
30%	5%	77%
50%	12%	88%
70%	25%	95%
90%	56%	99%

Reference: Korenstein Et. al., BM Emerg Med 2007

Causes of Elevated BNP

- Acute CHF
- Renal Failure
- Sepsis
- Pulmonary Embolism

BNP Decreases LOS & Cost

15

Reference: Moe et. al., Circ 2007

Reference: Mueller et.al., NEJM

Summary of BNP

 Combining clinical judgment & BNP may improve accuracy of diagnosis

Most helpful when diagnosis unclear (e.g. COPD)

Can be elevated in ARF, sepsis or PE

Diagnosing CHF by Ultrasound

- Extravascular lung fluid
 - Look for "comet tails"

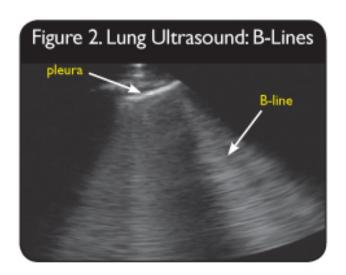
- Elevated Rt heart filling pressures
 - Examine IVC within 2 cm of Rt atrium

Ultrasound B-lines (Lung Rockets) in CHF

• Pros:

- Easy windows
- 80-90% sensitivity & specificity

• Cons:


- Takes 2-5 minutes
- Limited data from ED

Lung Ultrasound for B-Lines (Lung Rockets)

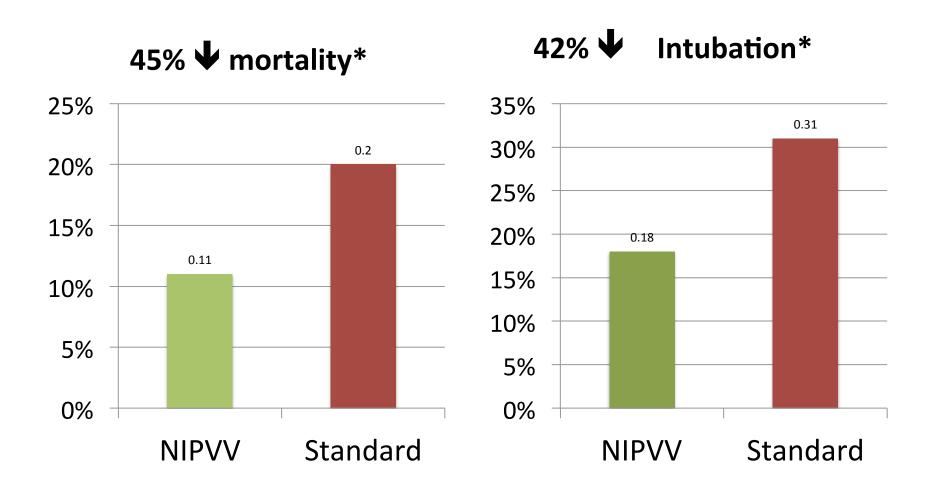
- Position 1: anterior chest view
- Position 2: lateral chest views

Ø PD-INEL

Measuring IVC by Ultrasound in AHF

Pros:

- Rapid
- 69%PPV & 91% NPV
- Accuracy 83% for Atrial Pressures


• Cons:

- Correlation Atrial Pressures to AHF
- Technically challenging

Management of Acute CHF

- Oxygen
- Diuretics
- Nitroglycerin
- Morphine

CPAP/BiPAP Decreases Mortality & Intubation

Reference: Masip et al. JAMA 2005

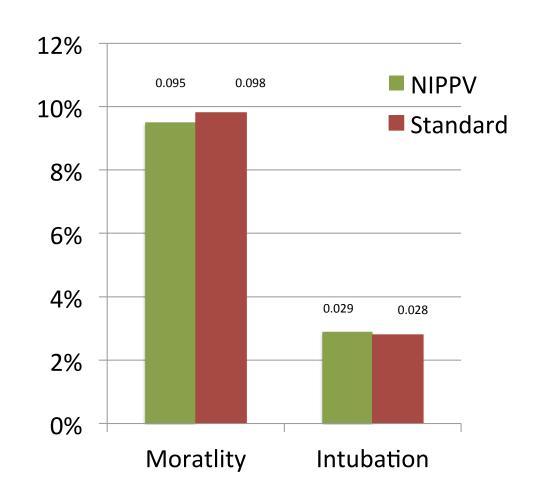
Reference: Masip et al. JAMA 2006 22

CPAP & BiPAP Equivalent

CPAP = Bipap

- Mortality
- Intubation rates
- AMI

Mortality


CPAP	BiPAP
6%	7%

ED Study of NIPPV vs. Standard Medical Care (SMC)

- 1069 ED
- Randomized for 2 hrs of treatment
 - CPAP
 - BiPAP
 - Oxygen by NC or FM

No Difference NIPPV vs. SMC

- No Difference
 - Mortality
 - Intubation rates
- NIPPV better
 - − **Ψ** Respiratory distress
 - Wetabolic disturbances

Reference: Gray et al. NEJM 2008

Why Discrepancy Between Studies?

Study	Mortality	Intubation Rate
Gray et al. <i>NEJM</i>	16.5%???	2.8%
Masip et al JAMA	20%	31%
Cochrane	20%	30%

Reason for Discrepancy

Change in Treatment	Standard Oxygen (N=367)
Intubation	3
CPAP	43
NIPPV	13
Standard treatment	
Type treatment not noted	6

65/367 (18%) Patients Crossed Over in Standard Treatment Group

Summary of NIPPV

- Most likely:
 - Decreases mortality
 - Decreases intubation rate
 - Decreases respiratory distress
- Use in Patients with:
 - Significant respiratory distress
 - − O₂ Saturation <90%

68 y.o. Female in Severe CHF. Home Meds 80 mg Lasix

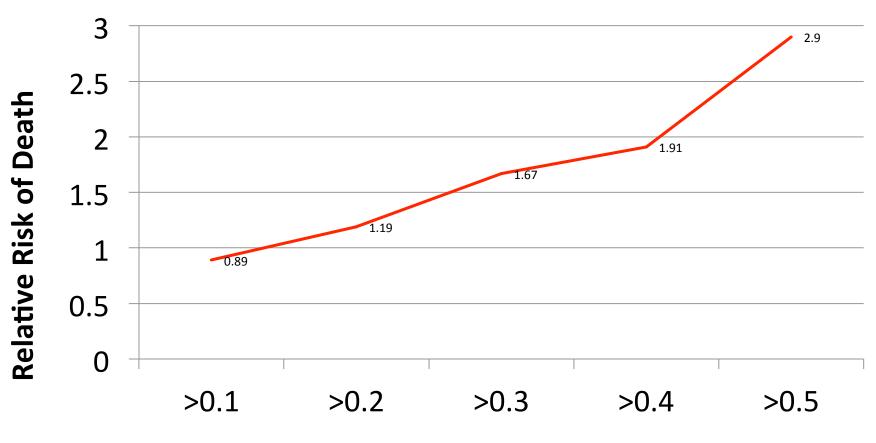
- How much IV Lasix should you give her?
 - None
 - -40 mg
 - 80 mg
 - $-160 \, \text{mg}$

Decreased Effectiveness of Loop Diuretics in CHF

- Delayed onset of action
 - 15-30 minutes normal patients
 - 45-120 minutes in CHF

Drug resistance in chronic users

Cardiac Effects of Lasix


- Venous dilatation
 - Healthy subjects
 - Maximized @ 20 mg
- Arterial constriction
 - CHF patients
 - Predominates early

Physiological Effect	
PVR	^
SVR	^
MAP	^
HR	^
RtAFP	^
SV??	Ψ
Catecholamines	^

Worsening Creatinine and Acute Congestive Heart Failure

- Occurs in 72% of patients with CHF
- Increased mortality
- 1 LOS

Increased Mortality Associated with Worsening Creatinine

Creatinine Elevation

Reference: Gottlieb et al. J Card Fail 2002