Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
COPD in the emergency department

Frank Madore, MD
Hennepin County Medical Center
Minneapolis, MN, USA
BACKGROUND
epidemiology

- one of the top causes of death worldwide
- 7th most common cause of disability by 2030
- billions of dollars per year in treatment and lost productivity
- under-reported (only 50\% see a physician for an exacerbation)
- 2\% of all hospitalizations, 20\% >65 years
pathophysiology

- chronic airway inflammation as in asthma
 - asthma: eosinophils
 - COPD: neutrophils, CD8+ lymphocytes, & macrophages

- lung parenchyma damaged by TNF, leukotriene B4, & interleukin 8
 - hence, poorer response to anti-inflammatory treatments than asthma

- COPD = chronic bronchitis + emphysema
chronic bronchitis

- progressive scarring and narrowing of airways → obstruction
- increase in globlet cells → mucus plugs
- epithelial damage → mucociliary impairment → decreased clearing of bacteria and mucus
emphysema

- destruction of alveoli
- loss of elasticity
- collapse of small airways
- chronic air trapping/hyperinflation
- prolonged expiratory phase
 - decreased FEV1 (forced expiratory volume in 1 second)
natural course

- chronic bronchitis + emphysema → decreased size of pulmonary vascular bed → capacity for gas exchange
- chronic hypercapnia and hypoxemia result
- lung vessels thicken, hemoglobin increases → increased pulmonary vascular resistance → pulmonary hypertension → R-sided heart failure
etiology

- smoking, pollution (incl indoor cooking), occupational exposures, genetic factors
- negatively affect body's natural oxidant/antioxidant and protease/antiprotease balances
- secondary effects:
 - weight loss, muscular wasting, metabolic derangement, depression etc.
staging

- **stage I – mild**
 - FEV1 > 80% predicted, little to no symptoms

- **stage II – moderate**
 - FEV1 50-80%, shortness of breath on exertion, occasional exacerbations

- **stage III – severe**
 - FEV1 30-50%, shortness of breath at rest, frequent exacerbations

- **stage IV – very severe**
 - FEV1<30%, ↓pO2, ↑pCO2, cor pulmonale
CLINICAL
physical exam

- chronic bronchitis - “blue bloater”
 - chronic respiratory failure, cor pulmonale, polycythemia, hypoxia
 - cyanosis, facial plethora, edema, JVD, frequent cough

- emphysema - “pink puffer”
 - thin, anxious, dyspneic, barrel chested, uses accessory muscles, pursed lip exhalation (auto-PEEP)

- most patients exhibit elements of both
exacerbation

- acute and unusual change in baseline dyspnea, cough, or sputum production
- warrants change in baseline medication
- more common in winter
 - suggests relation to seasonal viruses (RSV, coronavirus, influenza, rhinovirus)
- bacteria isolated in 50% of exacerbations
 - also isolated in a similar proportion of COPD patients without exacerbation
Comorbidities

- Patients with COPD are also at much higher risk for:
 - CAD/acute coronary syndrome (smoking)
 - Pulmonary embolism (sedentary)
 - Pneumonia (decreased ciliary function)
 - Congestive heart failure (R-sided)
 - Pneumothorax (ruptured bullae)
 - Arrhythmias (atrial tachy)

- Be careful to avoid premature closure
 - “Just a COPD exacerbation”
diagnostic approach

- pulse oximetry – compare to baseline
- ABG – limited utility, mgt guided by exam
 - acute resp acidosis, compensatory metabolic alkalosis – values don't predict outcome
- ECG – ACS, arrhythmia
- CBC – limited value (↑WBC, ↑Hb)
- BNP – may help rule out CHF
- d-dimer – may help rule out PE
imaging

- CXR – atelectasis, PNA, CHF, pneumothorax, bullae, pericardial/pleural effusions, pulmonary fibrosis, etc.
- US – CHF, PE, pericardial effusion, pneumothorax, pleural effusion
 - careful with interpretation of large RV
- CT – definitive diagnosis of PE, bullae vs. pneumothorax, atx vs. PNA, etc. in unclear clinical situations
MANAGEMENT
long term

- chronic inhaled steroids
- albuterol as needed
- influenza and pneumonia vaccines
- home oxygen when necessary
- smoking cessation
63 yo M with a history of COPD p/w shortness of breath, cough

started out as a cold with worsening over 3 days

increasingly productive cough

more frequent albuterol use

VS: P104, BP166/94, R26, T37.4, 89% RA

 appears anxious, dyspneic

 poor air movement on auscultation
acute exacerbation

- **A – airway**
 - intubation if obtunded, severe respiratory distress, or clinically tiring out (RSI vs. nasal)

- **B – breathing**
 - inhaled albuterol/ipatropium
 - non-invasive positive pressure ventilation
 - oxygen

- **C – circulate medications**
 - antibiotics
 - corticosteroids
airway

- indications for intubation
 - severe respiratory distress
 - agitation, obtundation
 - fails NIPPV
 - shock
 - respiratory arrest

- methods of intubation
 - RSI – takes away respiratory drive, familiar
 - nasal – preserves ventilation, less familiar
breathing

- oxygen (as little as possible for sat ~90%)
 - monitor respiratory rate, intervene if slow
- albuterol 2.5 mg neb, titrate to effect
 - beta 2 agonist \rightarrow bronchodilation
- ipatropium 0.5 mg neb, repeat x3
 - anticonlinergic \rightarrow inhibits smooth muscle contraction, decreases secretions
- non-invasive positive pressure ventilation
 - provides extrinsic PEEP to \downarrow work of breathing
circulate medications

- corticosteroids
 - 60 mg prednisone PO x1, 40 mg daily x4
 - 125 mg solumedrol IV x1

- antibiotics
 - objective evidence of pneumonia
 - increased sputum production
 - critically ill patients (ventilated)
disposition

- significant worsening from baseline
- poor response to ED treatment
- significant co-morbid diseases
- hypoxia
- unable to care for self
 - can they get around their house?
 - can they keep down fluids?
 - who will call for help if they get worse?
SUMMARY
in conclusion...

- it's not always “just” a COPD exacerbation
- treat with beta agonists, anticholinergics, and steroids
- try NIPPV before intubating
- re-evaluate frequently
- make then prove to you that they can go home
QUESTIONS