We have reviewed this material in accordance with U.S. Copyright Law and have tried to maximize your ability to use, share, and adapt it. These lectures have been modified in the process of making a publicly shareable version. The citation key on the following slide provides information about how you may share and adapt this material.

Copyright holders of content included in this material should contact open.michigan@umich.edu with any questions, corrections, or clarification regarding the use of content.

For more information about how to cite these materials visit http://open.umich.edu/privacy-and-terms-use.

Any medical information in this material is intended to inform and educate and is not a tool for self-diagnosis or a replacement for medical evaluation, advice, diagnosis or treatment by a healthcare professional. Please speak to your physician if you have questions about your medical condition.

Viewer discretion is advised: Some medical content is graphic and may not be suitable for all viewers.
Use + Share + Adapt

{ Content the copyright holder, author, or law permits you to use, share and adapt. }

- **Public Domain – Government**: Works that are produced by the U.S. Government. (17 USC § 105)
- **Public Domain – Expired**: Works that are no longer protected due to an expired copyright term.
- **Public Domain – Self Dedicated**: Works that a copyright holder has dedicated to the public domain.
- **Creative Commons – Zero Waiver**
- **Creative Commons – Attribution License**
- **Creative Commons – Attribution Share Alike License**
- **Creative Commons – Attribution Noncommercial License**
- **Creative Commons – Attribution Noncommercial Share Alike License**
- **GNU – Free Documentation License**

Make Your Own Assessment

{ Content Open.Michigan believes can be used, shared, and adapted because it is ineligible for copyright. }

- **Public Domain – Ineligible**: Works that are ineligible for copyright protection in the U.S. (17 USC § 102(b)) *laws in your jurisdiction may differ

{ Content Open.Michigan has used under a Fair Use determination. }

- **Fair Use**: Use of works that is determined to be Fair consistent with the U.S. Copyright Act. (17 USC § 107) *laws in your jurisdiction may differ

Our determination **DOES NOT** mean that all uses of this 3rd-party content are Fair Uses and we **DO NOT** guarantee that your use of the content is Fair.

To use this content you should **do your own independent analysis** to determine whether or not your use will be Fair.
Meningitis
and other CNS infections
BACKGROUND
History

- First described by Viesseux in 1805
- Flexner developed antiserum in 1913
- Antibiotic use began in 1930s-40s
- High morbidity and mortality to this day
 - 20-40% depending on organism
 - 30% with residual deficits
- Changing landscape of causative organisms based on vaccination patterns
definitions

- *meningitis* – inflammation of the meninges
- *encephalitis* – inflammation of brain parenchyma
- *myelitis* – inflammation of spinal cord
epidemiology

- meningitis endemic in parts of Africa
- occurs in epidemics in US
 - incidence is 5-10/100,000 per year, winter
 - 80% are Neisseria and Strep pneumo
 - viral meningitis twice as common, summer
- encephalitis less common but incidence rising due to West Nile Virus
- rare brain abscesses due to sinusitis, otitis media, immunocompromised
MENINGITIS
etiology

- streptococcus pneumoniae
- neisseria meningitidis (<45 yo)
- listeria monocytogenes
- aseptic
 - viral – HSV, enteroviruses, etc.
 - fungal – crypto, histo, blasto, coccidioides
 - parasites – toxo, neurocysticer. trichinosis
 - rickettsiae – RMSF, typhus
- non-infectious – post inf, drugs, systemic dz
pathophysiology

- nasopharyngeal colonization → mucosal invasion → enter blood stream → evade immune destruction → cross blood brain barrier into CSF
- meningeal inflammation → increased permeability of BBB, vasculitis, edema, increased ICP
- decreased cerebral perfusion, decreased CSF glucose, increased CSF protein
risk factors

- age <5 or >60
- male
- african descent
- crowding
- sickle cell disease
- malignancy
- etoh, DM
- recent ENT surgery or head injury
clinical presentation

- headache
- fever
- nausea/vomiting
- seizures
- altered mental status
- nuchal rigidity
- photophobia
- many present atypically (old, young, immune compromised, aseptic)
clinical presentation

- often have a primary source of infection on exam (PNA, UTI, sinusitis, OM, etc.)
- purpuric rash with menincococccemia
- Kernig Sign – can't extend knee to 180 while laying supine with hip in flexion
- Brudzinski Sign – 5 described, 2 used now
 - contralateral – flexion of one hip causes flexion of the other hip
 - neck – flexion of neck causes hip flexion
- jolt acceleration of headache
complications

- acute – coma, seizure, loss of airway reflexes, respiratory arrest, cerebral edema, DIC, dehydration, death
- delayed – seizures, paralysis, cognitive deficits, hydrocephalus, hearing loss, ataxia, blindness, death
- complications from viral meningitis are rare
ENCEPHALITIS
etiology

- usually viral – HSV, HHV, west nile virus, arbovirus, VZV, EBV
- occasionally idiopathic, post infectious, or bacterial (mycoplasma pneumoniae)
pathophysiology

- innoculation occurs via various mechanisms depending on the virus
- viremia, proliferation within neurons, or invasion via nasal mucosa
- CSF invasion similar to meningitis but less of an immune response if viral → fewer neurologic sequelae in most patients
clinical presentation

- symptoms similar to meningitis, except:
 - almost all have AMS
 - personality changes
 - focal neurologic signs
 - higher incidence of seizure
 - hallucinations, bizarre behavior

 may precede other signs → psych dx
complications

- dependent on etiologic agent
- Japanese, Eastern equine, and St. Louis encephalitis have high M&M
- West Nile Virus infects few but has significant mortality
- HSV mortality dropped from 70% to 30% with acyclovir
 survivors: seizure, motor/cognitive deficits
- TB M&M vary based on duration
- fungal mortality high, morbidity low
CNS ABSCESS
etiology

- usually invasion from more common ENT infections (otitis media, sinusitis, dental infections, etc.)
- streptococcus milleri most common
- also bacterioides, staph aureus, propionbacterium, enterobacteriaie
clinical presentation

- similar to encephalitis, often difficult to differentiate clinically
- usually subacute (>2 weeks onset) course of illness
- often have papilledema
- acute worsening can occur with rupture of abscess into ventricles or with uncal herniation
- can mimic intracranial hemorrhage
complications

- mortality >50% without aggressive care
 <20% with surgical aspiration + abx
- 80% develop seizure disorder
- cognitive deficits, focal neuro deficits common
- epidural abscess → paralysis, motor & sensory deficits, bowel/bladder dysfunction
DIAGNOSIS
CT before LP?

- unnecessary in most patients with suspected meningitis, except:
 - focal neuro deficits
 - altered mental status/coma
 - papilledema
 - seizures
 - trauma
- CT and LP should not delay treatment
- abx → CT if needed → LP
lumbar puncture

- collect at least 3 tubes of 1 mL each
- opening pressure = 5-20 cm H2O
- cell count <5 WBC/mm3
- differential <1 PMN/mm3
- protein = 15-45 mg/dL
- glucose = 60% blood glucose
- gram stain/AFB
- culture, specific antigen tests
adjuncts to LP

- blood cultures
 often have higher yields for bacteria
- CBC w/diff
 don't let it talk you out of an LP
- chemistry panel
 compare glucose to CSF, renal function
- CXR
 50% w/strep pneumo meningitis have PNA
- EEG – encephalitis (HSV)
MANAGEMENT
resuscitation

- fulminant presentation
 - septic shock
 - seizures
 - cerebral edema
 - hypoxia
 - loss of airway reflexes
- standard supportive measures
 - mannitol for cerebral edema
 - empiric antibiotics as soon as possible
antibiotic regimen

- vancomycin plus
 - ceftriaxone or
 - cefotaxime or
 - meropenem or
 - chloramphenicol
- add ampicillin if >50 yrs
- neonates: cefotaxime + ampicillin
- special cases: penetrating trauma, post neurosurgery, VP shunt
other medications

- acyclovir for suspected HSV
- INH, rifampin, etc. for TB
- amphotericin B for fungal (not in ED)
- flagyl for CNS abscess

 also early neurosurgical consultation
steroids in meningitis

- dexamethasone has been shown to reduce cerebral edema, ICP, CSF lactate
- past studies with variable results
- randomized controlled study in sub-Saharan Africa showed no benefit in children
- randomized controlled study in Vietnam showed reduction of long-term neurologic sequelae with dexamethasone >14 yo

\[\text{dexamethasone for strep pneumoniae} \]
chemoprophylaxis

- rifampin 600 mg x4 doses in household contacts
- ciprofloxacin 500 mg x1 dose in HCW with direct contact (intubation, suctioning)
disposition

- admit
- can consider d/c if symptoms are classic for viral meningitis and follow up within 24 hours can be ensured

 often viral meningitis is admitted on abx until bacterial causes can be excluded
SUMMARY
in conclusion...

- suspicion of CNS infection mandates LP unless contraindications to blind LP exist
 in which case, perform HCT first

- do not delay abx for HCT or LP

- evaluation for CNS infection in a patient with the right symptoms should not stop if another infection is found
 many have hematogenous spread from PNA or UTI
QUESTIONS